Available Technologies

TVC has hundreds of technologies available for licensing. Detailed information, along with contact information, for each technology is available online and for download.

Search Available Technologies

Search by category


3D FIBER OPTIC INTERFEROMETER

Technology Summary
+

Interferometry is a measurement technique that involves the superimposition of light waves, providing distance measurements with great accuracy. Highly accurate 3D measurements can only be made at the expense of time. The 3D fiber optic interferometer directly measures three- dimensional distance and position with high speed and precision. The device uses light from single mode optical fibers to determine the distance between points in space. It does not require careful alignment of the fibers and can provide determination of absolute position. This device could be utilized in a number of manufacturing and robotic applications since it overcomes many of the difficulties associated with the distance between two articulating points. The device is accurate over one meter distances and would be most useful in machine shops employing large batch statistical process control manufacturing.


3D PRINTING IN THE BODY

Technology Summary
+

Implantable medical devices, such as artificial joints, coronary stents, and artificial organs increasingly are customized for individual patients using 3D printing technologies. After surgical implantation of externally printed devices, the soft tissue surrounding the implant or repaired bone must heal on its own. This process can result in disfiguration and debilitating scar tissue. Short-term implants provide temporary tissue support to assist the healing process, but eventually require surgical removal. The proposed invention facilitates printing soft structures inside the body. Heat-enabled cross-linking polymers are inserted into a body cavity as a liquid and then activated with heat, causing them to solidify. The polymers conform to a specific shape creating 3D soft structures directly in the body. The technology could repair soft tissue damage, as well as create reconstructive implants or antennae for improved transmissivity.


5-HT2B SELECTIVE INHIBITORS

Technology Summary
+

Novel family of 5HT2B-selective antagonists for neuropathologies, such as Alzheimer’s disease, depression, ADHD, and migraines. Potential application in cardiology, gastroenterology, and bone marrow diseases.

Serotonin receptors are popular targets for many diseases, particularly neuropathologies. The existence of 14 subtypes, however, necessitates selective ligands. Current drugs tend to bind non-selectively to 5-HT2A and 5-HT2C as well as 5-HT2B, limiting their use. The proposed antagonists offer increased selectivity to 5-HT2B. These compounds exhibit nanomolar to micromolar selective interactions, which increases efficacy and reduces side effects of therapeutics. 5HT2B has additional potential applications in gastrointestinal, cardiac, and bone marrow related conditions.


ACCUBREATH: NON-INVASIVE, PORTABLE SUPPORT VENTILATOR

Technology Summary
+

Respiratory depression and airway obstruction are the primary causes of morbidity associated with sedation and analgesia. The typical approach in these cases is to temporarily ventilate the affected patient by hand, using a face mask and a bag that is periodically squeezed to deliver breaths. The proposed technology is a non-invasive, portable ventilator designed to replace these Bag Valve Masks. This new device delivers support ventilation (up to 25 cm H2O) without the need for compressed oxygen. By monitoring patient air intake, oxygen pressure, and tidal volumes, the device helps maintain ventilation, while reducing adverse effects such as stomach inflation. The device is easy to use, requiring use of one hand, and adjusts for changing conditions.


ACTIVATION PATTERN PERMUTATION COMPUTED TOMOGRAPHY OF CARDIAC CONDUCTION

Technology Summary
+

Sudden cardiac death is often associated with arrhythmia, which affects over three million people each year in the United States. These patients are at increased risk of stroke, heart attack, heart failure, and sudden cardiac death. Risk of developing an arrhythmia can be determined through the identification of cardiac conduction abnormalities, but that method falls short of monitoring the health of the cardiac tissue itself.

Measuring the conduction velocity of electrical impulses through heart tissue determines the health of that tissue. A standard clinical loop catheter is used to extract longitudinal and transverse conduction velocities. These velocities are indicative of various disease states, providing clinicians with the exact location of diseased tissue to improve patient treatment plans. A map of where the diseased tissue resides in the heart is generated for reference during the procedures, enhancing the treatment of heart defects, such as atrial fibrillation.


ACUTE MYELOID LEUKEMIA COMBINATION THERAPY

Technology Summary
+

Acute Myeloid Leukemia (AML) is an aggressive cancer with a five-year survival rate under 50 percent. In fact, only about one-third of AML patients are considered healthy enough to safely undergo chemotherapy, which leaves many patients without treatment options. The proposed technology combines known AML drugs with HPMA polymers to prolong the active half-life of the drugs. This improves targeting of the tumor site and reduces off-target side effects. As each drug works through a different mechanism, the cancer cells are eliminated more completely, meaning lower doses of the drug may be used. This therapy provides treatment options for patients too sick to undergo chemotherapy or who prove non- responsive to existing, first-line treatments.


ADD.IT

Technology Summary
+

Over two million youth in America experience challenges associated with ADHD. Up to 32 percent of students diagnosed with ADHD fail to complete high school. Medication helps prevent hyperactivity and impulsivity but has little impact on academic achievement.

ADD.it assists students with time management, working memory, and executive function to improve their school performance. The software prompts students to record assignments at the end of each class following a pre-entered schedule. Parents and teachers verify students recorded information correctly. Students can schedule time to complete assignments and receive reminders for entered tasks. The software prioritizes tasks by due date and estimated time to complete. Students receive points for correctly entering, scheduling, and completing assignments as well as receiving a satisfactory grade. Students are then awarded points which can be redeemed for various purposes as determined by the parents/guardians.


ALBUMIN-BASED NANOMEDICINES

Technology Summary
+

Over 70,000 new cases of Non-Hodgkin’s Lymphoma (NHL) were diagnosed in 2015, while nearly 20,000 people died from the disease. Most NHL cases derive from B cell lymphocytes and are treated with rituximab and chemotherapy. Almost 40 percent of patients, however, develop resistance to these therapies. Research indicates the proposed albumin- based nanoconjugate can trigger direct and specific apoptosis of B-cell lymphomas without the help of effector cells. Hybridization of two complementary morpholino oligonucleotides or complementary coiled-coil forming peptides at B cell surface mediates crosslinking of receptors to initiate apoptosis. One oligonucleotide (MORF1) or coiled-coil forming peptide (CCE) is bound to an antibody fragment recognized by the CD20 receptor (nanoconjugate 1); the complementary oligonucleotide (MORF2) or oligonucleotide (CCK) is bound in multiple copies to human albumin.


ANCHOR, SPLICING, AND PRESTRESSING DEVICE FOR FRP RODS

Technology Summary
+

Tens of thousands of US bridges and buildings, many over 50 years old, need repairs or are at risk of failure due to antiquated technology and materials. Fiber-reinforced polymer (FRP) composite rods have high strength-to-weight ratios and resist corrosion, but as yet have not been used widely in post-tensioning or in pre-stressing applications. Standard gripping anchors, when used with FRP rods used to repair infrastructure, place stress on individual fibers, leading to premature failures. The proposed technology is an inexpensive anchor, splicing, and pre-stressing device for FRP rods. The device is simple to build and uses conventional materials such as steel and epoxy to achieve pre-stressing of FRP rods of any length. It makes FRP rods a more viable option for construction, significantly reducing costs and adding a successful FRP anchor for post-tensioning and pre-stressing applications.


ANTAGONIST OF TRPV1 RECEPTOR

Technology Summary
+

Transient Receptor Potential Vanillaoid-1 (TRPV1) mediates pain and inflammation. Stimuli, such as heat, protons, and chemical ligands, generate action potentials that release neurotransmitters and neuroactive peptides to stimulate nerves causing a painful, burning sensation. Studies indicate inhibiting TRPV1 could suppress pain, as well as treat chronic pain and inflammatory hyperalgesia. The proposed invention is a series of peptides that act as TRPV1 channel antagonists. These peptides are delivered to the TRPV1 channel using a carrier that prevents off-site toxicity, but still allows the antagonist to bind to the TRPV1 channel. The peptides can be delivered topically or intravenously for use in pain treatment.


ANTIBODY-DRUG COMPLEX: ENHANCED DELIVERY OF ANTI-CANCER THERAPY

Technology Summary
+

The American Cancer Society states breast cancer is the second most common cancer and second leading cause of death among women in the United States, despite improvements in early detection, treatment, and survival. The preferred treatment involves targeted therapy, which uses selective antibodies and leaves normal cells relatively unharmed.

Conventional antibody-drug conjugate technology for breast cancer, however, is limited due to safety concerns about bonding that leads to low antibody concentration. A novel drug-delivery system combines cancer- specific targeting mechanisms with anti-cancer agents without chemical modifications. The conjugate is comprised of an ATP binding domain (ABD), an anti-cancer drug, and a scFv antibody that targets a specific receptor on the surface of a cancer cell. The fused protein captures an anti- cancer agent without creating a chemical bond and then delivers it to a cancer cell. The drug carrier also has intrinsic anti-proliferative properties that increase drug efficacy by depriving the cancer cell of ATP.


ANTIMICROBIAL CAP FOR EXTERNAL IMPLANT PROTRUSIONS

Technology Summary
+

External fixation, in which an implant protrudes from the skin, is typical for lower limb amputees because it enables them to attach a prosthetic to their limb. Soft tissue infection at the skin-external fixator interface is a common condition that can spread to the internal prosthesis device. If prosthesis infection remains undetected, it usually requires surgical removal of the device.

University researchers have constructed an antimicrobial cap to mitigate infection complications of external fixators. The cap slips over the external portion of a fixator and covers the soft tissue surrounding it. The cap is imbued with an antimicrobial agent and fits closely to the soft tissue-fixator interface, providing long-lasting protection against infection.


ASTHMA TRACKER

Technology Summary
+

Asthma is the most common chronic pediatric illness, with over 7 million children in the United States suffering from the disease and annual economic costs of over $20B. Asthma control tests address four weeks of asthma symptoms at one time and are not administered regularly. Failure to effectively monitor and manage asthma symptoms leads to increased asthma attacks, which typically results in emergency room visits, and poor quality of life. Asthma Tracker improves asthma management by enabling self-monitoring of symptoms over smaller time periods. The online patient portal uses a questionnaire to assess asthma symptoms each week. Once the survey has been completed, a report is generated and sent to the primary care provider. Poor results trigger contact from a healthcare provider to discuss symptoms and schedule appointments as necessary.


AT-HOME BACK TRACTION DEVICE

Technology Summary
+

Lower back pain affects over 80 percent of the United States population, with adverse effects ranging from minor discomfort to severe, incapacitating pain. In many cases, lumbar traction reduces discomfort and can help the body to heal by stretching the spine and reducing pressure on compressed disks. Equipment to support lumbar traction, however, can be costly, large, complicated, and inconvenient, which often prevents in home use. A popular home solution, the inversion table, can be unsafe and also ineffective because the position cannot maintained for the 15 minutes required for traction to occur.

This Back Traction Device is a simple, comfortable device that allows sustained lumbar traction sessions to relieve lower back pain. The device uses gravity to gradually distract tissue and vertebra, decompressing the lumbar spine as the patient lays on the floor. Treatable back pain includes discomfort from nerve impingement, stenosis, arthritis, and disc bulges.


AUDIO MINION

Technology Summary
+

Faculty, students, and performers at concert halls and music schools desire high-quality recordings to review rehearsals, document concerts, and prepare audition materials. Time and expense restraints, however, force most venues to limit recordings. Audio Minion facilitates professional quality recordings without the active participation of a sound engineer. In spaces where microphones are routed to a control room, the system automatically initiates recordings after detecting sound levels above predetermined thresholds. Recordings conclude after sound levels fall below the threshold for a set period of time. The program stores completed files by date and time in an easy to retrieve manner. The system allows on demand access to files for review and editing. Audio Minion can track multiple spaces independently and differentiate between recordings created in each room for retrieval.


AUGMENTED VIDEOLARYNGOSCOPY SYSTEM

Technology Summary
+

Tracheal intubation requires placing a tube into the windpipe through the nose or mouth. This procedure is frequently performed in critically injured, ill, or anesthetized patients to facilitate lung ventilation and prevent asphyxiation or airway obstruction. The vast majority of tracheal intubations involve optical instruments, such as a video laryngoscope, to improve airway and vocal cord visualization. Conventional video laryngoscopes, unfortunately, fail to provide sufficient information to guide intubation.

The Augmented Videolaryngscopy System integrates with traditional video laryngoscopes, adding sensors, a microprocessor, and network connectivity. The new video laryngoscopy system provides improved visualization, audio and voice control features, onscreen display of auxiliary information, image information extraction for display, analysis, and processing. It also facilitates information-based treatment. This can be applied to perioperative anesthesia, critical care, emergency medicine, and battlefield trauma situations.


BCAA/ARGININE SOLUTION

Technology Summary
+

Autophagy is a cellular process that activates under conditions of nutrient stress. Excessive and long-term induction of autophagy leads to the destruction of essential proteins and organelles. It is also related to congestive heart failure, myocardial infarction, and ischemia reperfusion. The proposed precise formulation of an amino acid solution comprised of isoleucine, leucine, valine and arginine increases mTOR signaling and cell growth in patients with damaged tissues and heart disease. In addition, the osmolarity and pH of the solution allow it to be administered in large volumes without risk of significant osmotic shift.


BENZONORBORNADIENE DERIVATIVES AND REACTIONS

Technology Summary
+

Biorthogonal dissociative reactions boast diverse potential applications in chemical biology and drug delivery. Specific cargo molecules within cells are released when benzonorbornadienes react with tetrazines to release amines from carbamate leaving groups. These carrier molecules are highly stable at physiological conditions, but react rapidly with tetrazines and near-quantitatively release cargo molecules such as drugs and optical reporters. The reactions are designed to take place without interfering with the existing cell chemistry and could serve a number of different purposes including DNA sequencing, cell imaging, drug delivery systems, and reaction protection groups.


BH4 (KUVAN) FOR TREATMENT OF SYSTEMIC SCLEROSIS VASCULOPATHY

Technology Summary
+

Systemic Sclerosis (SSc) is a multisystem autoimmune disorder with a progressively devastating course. Increased fibroblast activity results in abnormal growth of connective tissue that causes vascular damage and fibrosis. Fibrosis occurs in skin, the gastrointestinal (GI) tract, and other internal organs. There is no cure, effective therapy, or gold standard measurement for disease progression. Delay in diagnosis increases morbidity and mortality. BH4 is a novel approach for treating SSc by targeting vasculopathy that precedes fibrosis. BH4 (KUVAN) is currently approved to treat phenylketonuria (PKU). Short term study results indicate that BH4 (KUVAN) alleviates SSc symptoms in patients.


BIMANUAL OPERATIVE BRONCHOSCOPE

Technology Summary
+

Foreign body aspirations require urgent intervention to prevent life threatening complications. Rigid bronchoscopes facilitate removal of foreign objects and serve as an airway to maintain patient oxygenation during the procedure. Use of these bronchoscopes, however, is limited by complicated assembly, poor fit, and increased flow resistance.

A novel rigid bronchoscope improves the flow of gas during foreign body removal in pediatrics patients to prevent complications. The bronchoscope is a single system that contains a lighting and imaging system to provide continuous viewing of the airway. The proximal and distal ends allow for increased movement of instruments. A disposable cuff attached to the bronchoscope maintains positive pressure ventilation. The device requires minimal assembly and facilitates more efficient intervention to restore ventilation.


BIODEGRADABLE DRUG-DELIVERING NERVE CONDUIT

Technology Summary
+

Over 25 percent of patients who undergo surgery for nerve injuries experience complications from scar tissue and infections. Less than 50 percent of patients recover full motor and sensory function after a peripheral nerve injury. The Biodegradable Drug-Delivering Nerve Conduit aims to improve patient outcomes by regenerating nerves. A drug reservoir is attached to a biodegradable conduit that acts as a bridge between damaged and healthy nerves. It allows impulses to reach the damaged nerves and preserves muscle function. This technology also offers unique adaptability. It is able to release a variety of different proteins or small molecules and can also titrate drugs into a patient as necessary without a complete redesign of the technology.


BIOLOGICAL VENTRICULAR ASSIST DEVICE

Technology Summary
+

Biologic ventricular assist device capable of capturing, growing, and administering stem cells in situ to regenerate and restore damaged myocardium in the heart.

Ventricular assist devices (VADs) typically support heart failure patients until a donor heart becomes available. VAD’s not only fail to regenerate heart tissue and restore normal function, but the longer a VAD is in place, the more scar tissue replaces healthy heart tissue, leaving the patient incapable of functioning without the device.

A novel biological VAD restores heart function by delivering stem cells, genes, genetically modified cells, or other therapeutic agents to end-stage heart failure patients. It also includes a stem cell accessory that captures circulating stem cells and cultures them for delivery back to the heart by an electro-mechanical delivery system. Delivering stem cells and other agents to the heart allows the myocardium to regenerate and repair itself, restoring normal function to the heart and allowing the VAD to be removed.


BRAIN HEALTH SUPPLEMENT

Technology Summary
+

Surveys suggest over 15 percent of individuals suffer from at least minor depression and anxiety globally. These disorders are characterized by psychosocial and physical impairment, with a high suicide rate among those affected. Individuals suffering from psychiatric disorders that require prescription antidepressants frequently do not receive treatment. Creatine, omega-3 fatty acids and citicoline all augment brain mitochondrial function to maintain energy and stability. A brain health supplement, or nutraceutical, combining creatine, omega-3, and citicoline has shown improved attention span and mood in clinical trials. Using natural products, that are currently approved for use without a prescription and exhibit minimal sides effects, this supplement improves overall mental health.


BREAST-CANCER-PATIENT-DERIVED TUMORGRAFTS

Technology Summary
+

Breast cancer causes over 40,000 deaths in the United States annually. Use of patient-derived tumorgrafts improves treatment efficacy, but availability of such models is limited. Novel models for breast tumor growth and metastasis, derived from patients and engrafted directly into the mammary glands of mice, increase access to patient-derived tumorgrafts. The model promotes angiogenesis, increases tumor growth, and facilitates maintenance of ER protein levels during serial propagation. With twelve developed tumorgraft lines, the model spans all major clinical breast cancer subtypes and several of the known molecular subtypes. The tumorgrafts recapitulate spontaneous metastasis with patterns similar to those observed in the original patients and serve as a critical indicator of patient outcome.


BREATHALYZER SENSOR

Technology Summary
+

Conventional methods for tuberculosis (TB) and other infectious disease detection involve time consuming culturing techniques performed in laboratories. Other technologies offer faster detection, but have poor sensitivity. Delays often result in unsustainable costs and poor health outcomes. Diagnosing patients earlier would improve treatment efficacy, but cannot currently be done with noninvasive, point of care diagnostics.

The Breathalyzer Sensor enables rapid detection of volatile organic biomarkers. The sensor identifies bacterial biomarkers expelled from the lungs, which bind to additional biomarkers embedded in the breathalyzer. The sensor operates under a bias voltage, using the change in current to provide a diagnosis with high sensitivity. This system enables non-invasive, point of care testing for infectious disease, such as TB, without the high costs associated with lab diagnostics.


BROADBAND HOLOGRAPHIC PROJECTION DEVICE

Technology Summary
+

Counterfeit goods cost the United States over $600B each year. The anti- counterfeiting industry continuously develops new technologies since market ready solutions do not eliminate all counterfeiting techniques. There is a particular need for stronger methods of anti-counterfeiting in the pharmaceutical, ticketing, and bank note industries. The proposed technology enables full color holographic image projection across the electromagnetic spectrum for static or dynamic images with high efficiency and almost no absorption losses. The holographic images can operate in transmission or in reflection, making them incredibly difficult to counterfeit.


BROADLY PROTECTIVE INFLUENZA VACCINES

Technology Summary
+

Influenza A causes seasonal epidemics that affect millions of people every year and result in the death of between 250,000 and 500,000 annually.

These seasonal epidemics and pandemics arise because of the constant evolution of the virus through both mutations and genetic reassortment. Current flu vaccines are type-specific, and while these vaccines may be effective against the target strain, they fail to prevent illness from variant strains. Universal vaccines target stable viral epitopes rather than the continuously changing seasonal varieties, but fail to provide meaningful protection. A novel methodology has been developed to create a more functional universal influenza vaccine. The vaccine is designed to block immune response to hemagglutinin primary antigenic determinants and elicit antibodies to less dominant antigens or proteins on the virus. This allows the immune system to recognize viral threats from non-selective proteins that are typically present in many variants of the virus, providing broader protection. The vaccine also uses antibody binding to interrupt essential viral functions and prevent spread of the disease.


CARDIAC TISSUE IMAGING CATHETER

Technology Summary
+

Atrial Fibrillation (AFib), the most common cardiac arrhythmia, causes serious tissue damage to the heart and increases the risk of stroke and heart failure. Existing ablation techniques only prove successful approximately 50 percent of the time because it is difficult to distinguish between diseased and healthy heart tissue.
A novel device improves ablation success by combining imaging, electrical mapping, and navigation. The device differentiates between healthy and diseased tissue with microstructural detail. The catheter and accompanying software also enables electrical mapping of the tissues functionality. This allows clinicians to visualize information of tissue microstructure with functional data, providing an individualized atlas of regional structure and function that guides diagnosis and treatment. The device is deployed using a steerable sheath and integrates with existing


CATHETER TIP MONITORING SYSTEM

Technology Summary
+

Cardiac tissue ablation is a technique used for the treatment of cardiac arrhythmias. Although approximately eighty percent of patients respond positively to ablation, poor visualization of the ablation catheter limits greater effectiveness. For example, inaccurate placement of the ablation radiofrequencies can cause unintended scars and recurrence of arrhythmia symptoms.

A novel monitoring system for magnetic resonance imaging-guided catheter ablation has been developed to enhance visualization. The system monitors catheter tip position relative to cardiac wall and tissue structures while ensuring contact between the ablation source and the target. Additionally, the imaging system better evaluates the quality of the ablation from the electrogram with electrogram-recording electrodes.


CATHETERIZED TISSUE MICROSTRUCTURE IMAGING DYE AND CATHETERIZED IMAGING

Technology Summary
+

Atrial Fibrillation (AFib) is the most common cardiac arrhythmia and causes serious tissue damage to the heart. AFib also increases the risk of stroke and heart failure. Existing ablation techniques only have about a 50 percent chance of success in treating AFib because clinicians do not have enough information about the extent and location of tissue damage. The proposed invention improves ablation treatment by providing real-time visualization of damaged tissues. A disposable probe characterizes tissue damage before, during, and after the ablation procedure. Computational imaging processing and electrical measurements are then used to transform sequences of two-dimensional images into complete, real-time images of the tissue. A steerable catheter can then position the ablation system using the images provided to ensure all damaged tissue is covered.


CAUTI PREVENTION WITH ADVANCECATH

Technology Summary
+

Catheter-associated urinary tract infections (CAUTIs) affect over one million patients in the United States annually and contribute to approximately 13,000 deaths and $1B in healthcare costs. Two-thirds of CAUTIs develop due to Foley catheter design flaws that limit urine flow and allow bacterial colonization on the catheter’s external surface. AdvanceCath is a flexible, indwelling catheter that keeps the sphincter and prostate urethra open, which allows urine to flow around the entire catheter and eliminates the space where bacteria typically spreads. A condom-like catheter collects urine and stores it in a sterile bag. The system also has the ability to flush the urethra with an antibacterial solution to reduce risk of infection further. A bladder retention mechanism under development includes a fail-safe component that will collapse the retention component under excessive pressure and prevent damage to the urethra as the device is removed.


CELL SPECIFIC IMMUNE CHECKPOINT THERAPY

Technology Summary
+

Almost 80 percent of patients undergoing immunotherapy experience toxicity complications that reduce drug efficacy and over 10 percent of patients experience life-threatening infections. New immune-tolerant elastin-like polypeptides (iTEPs) can be used as drug carriers without triggering an immune response in both mice and humans (Journal of Drug Targeting. Vol.24, p328-339). This technology has been applied to both drug delivery and immunology. The technology improves delivery of vaccines by conjugating the drug to the iTEP, which then self-assembles into highly stable, non-toxic nanoparticles with improved efficacy (Theranostics. Vol. 6(5), p666-678). The iTEPs are also utilized to target cytotoxic T lymphocytes and improve innate immune response as defense against cancer and infection. An iTEP-delivered CTL vaccine containing a metalloproteinase-9 (MMP-9)-sensitive peptide and a CTL epitope peptide has been developed. The MMP-9-sensitive vaccine increased epitope presentation by 7-fold, increasing the T-cell response by as high as 9.6-fold (Molecular Pharmaceutics, 14(10), 3312-3321). It has also been applied using αPD-1 antibody for checkpoint inhibition. A fusion protein consisting of a recombinant single-chain variable fragment of αPD-1 and an amphiphilic immune-tolerant elastin-like polypeptide self-assembles into a nanoparticle, which blocks the PD-1 immune checkpoint in vitro and in vivo (Molecular Pharmaceutics, 14(5), 1494-1500).


CHARGE STEERING HIGH DENSITY ELECTRODE ARRAY FOR DEEP BRAIN STIMULATION

Technology Summary
+

Deep brain stimulation (DBS) has therapeutic benefits for neurological disorders, such as Parkinson’s disease, tremors, chronic pain, and dystonia. Existing DBS solutions utilize four-channel electrodes that only allow spherical charge distributions. This lack of targeting capability results in placement errors, with three to five insertions typically required for correct placement.

A new electrode with enhanced circuitry enhances targeting and improves stimulation by selecting structure deep within the brain for therapeutic stimulation. The electrode uses a silicon backbone and seven wires for full control over an unlimited number of electrode contacts. The stimulation parameters can be controlled based on the neuroanatomical target by switching between contacts. This facilitates effective DBS on the first insertion of the electrode into the brain. The high number of small contacts on the surface also allows tight control over the amount of tissue being excited.


CHEMICAL PERCOLATION SWITCH

Technology Summary
+

Chemical sensors and electronic noise technology require continuous sources of energy and lack the ability to operate at low power, which limits their distribution. Sensors with low power consumption, however, have poor chemical selectivity.

The proposed technology is a chemically selective percolation sensor that can operate with zero or near-zero power consumption. The sensor includes a positive and negative electrode separated by a nano-sized switch gap. A binding agent, which differs based on the target compound, binds to the switch to form an electrically conductive-selective pathway via percolation between the positive and negative electrode. The switch connects to the power supply and switches on when exposed to a programmable threshold concentration of the target compound. Such low-energy use improves device life, reduces risk of detection, and requires less battery maintenance, and which is particularly applicable to military and defense applications. The switch can detect a wide range of chemical targets including chemical warfare agent aerosols and vapors, fuel and explosive vapors. For agricultural applications, the switch detects invasive parasitic plants.


CLINICAL CANCER RESEARCH SYSTEM

Technology Summary
+

No common repository for cancer-specific clinical research data to support translational research exists. Programs have developed individual mechanisms for extracting, recording, and using clinical research data, which unnecessarily complicates cancer research. The Clinical Cancer Research System aggregates all clinical and research investigations into one searchable database. This database is easy to maintain and simplifies information retrieval, which allows researchers to share basic patient information across cancer groups and complete cross study analyses. The database also provides robust security that allows for separation and protection of patient and research information.


CLINICAL NATURAL LANGUAGE PROCESSOR

Technology Summary
+

Clinical Natural Language Processing (NLP) systems require a semantic schema comprised of domain-specific concepts and associated modifiers to accurately extract information. NLP systems leverage this schema to extract meaning from texts. In the clinical domain, creating a schema requires input from clinicians and NLP experts. The proposed technology bridges the gap between clinicians and the development of NLP systems by seamlessly analyzing data extracted from handwritten clinical notes to provide healthcare professionals with information that supports better decision making. A web-based software tool supports users in developing domain content. Content is integrated into a system that processes the handwritten clinical notes and subsequently provides actionable data to doctors and clinicians. The notes can be reviewed and corrected for accuracy. Additionally, users can search for specific annotations based on semantic content.


COGGING-TORQUE ACTUATOR

Technology Summary
+

Motors were designed and optimized for industrial processes that require continuous smooth rotation, which typically requires minimization of cogging torque. These motors operate efficiently at high speeds, but must be geared down to achieve velocities and torques typically needed for robotics. This leads to inefficient motors with no inherent compliance. As compliance ensures safety and prevents damage to the robot, researchers have attempted to address the issue. Current solutions, however, require auxiliary components resulting in large, ineffective, and complex systems. A new type of robot actuator, comprising an electromagnetic machine combined with a local controller implementing bioinspired motion primitives. The cogging-torque actuator will accept high-level commands and adjust its own behavior according to its local experience through a combination of controlled passive dynamics and high-bandwidth feedback control. This design will facilitate more robust operation by enabling distributed control, inherent sensing capability, controllable compliance, and leveraging the nonlinear dynamics of the actuator.


COILED COIL p53

Technology Summary
+

p53 is a transcription factor that also stimulates apoptotic signaling through death receptors and the mitochondria. Over half of all cancer express p53 mutations and wild-type p53 is often introduced into cancer cells for treatment. Mutated p53, however, interacts with the wild-type p53 rendering it ineffective at suppressing tumors.
A novel form of p53 that contains a coiled-coil suppresses tumor activity without interacting with mutant p53. The coiled-coil causes the new p53 to interact only with itself, preventing dimerization. The p53 coiled-coil can be introduced into tumor cells without causing dominate-negative effect. It triggers a rapid apoptotic response and maintains full tumor suppression properties.


COLORECTAL-CANCER-PATIENT-DERIVED XENOGRAFTS

Technology Summary
+

Colorectal cancer (CRC) leads to almost 50,000 deaths in the United States annually. CRC treatment require patients to undergo tumor resection and, in later stages, chemotherapy. Early-stage progression of CRC and risks associated with chemotherapy, however, have caused physicians to question the benefits of chemotherapy in stage II patients. A novel model of CRC tumors allows for testing of drug efficacy prior to treatment. Using a patient-derived CRC tumor, a xenograft is implanted into an immune-deficient mouse in the most physiologically-relevant location. This implantation creates a personalized and high-fidelity model of that person’s tumor. Accurate patient-derived models can be used to determine the most effective treatment method for individual patients. These models are also serially propagatable, creating ample opportunities for research, drug testing, and development of new therapies.


COMBINATORIAL GENE CONSTRUCT AND NON-VIRAL DELIVERY FOR ANTI-OBESITY

Technology Summary
+

Obesity is a risk factor for a variety of conditions, including diabetes, cancer, and heart disease. Single target protein therapies demonstrate poor efficacy as the body adapts quickly, activating alternate mechanisms to maintain its original state. Combinatorial approaches produce better results, but also greater side effects, leading to increased costs that limit patient compliance.
A novel combinatorial gene construct delivered using a non-viral vector demonstrates improved ability against obesity without significant side effects. The gene construct utilizes two genes that have key roles in the regulation of feeding inhibition, gastric emptying, and energy expenditure. These genes are administered with non-viral polymeric vector linear polyethylenimine, which is less toxic than other polymer vectors and not recognized by the immune system. The therapeutic efficiently transports DNA throughout the blood when administered weekly via intraperitoneal injections.


COMPACT COMPLIANCE TACTILE FEEDBACK DEVICE

Technology Summary
+

Haptics, the science of interfacing with users via touch, is being used to provide sensory input to users in various applications, including robotic surgery, touch screen displays, and navigational systems. While robotic or automated instruments allow users to manipulate physical objects in a remote or virtual environment, they insufficiently communicate tactile information to users. Users have to rely instead entirely on visual information decreasing efficacy. Robot-assisted minimally invasive surgery (MIS), in particular, allows for greater precision and control but relies on high-quality visual systems to guide procedures. Surgeons simply cannot feel tactile changes and the impacts of surgical tools within a body cavity. The Compact Compliance Tactile Feedback Device provides a rendering of surfaces based on the stiffness of the surface in question. The device calibrates based on the user’s force and displacement and communicates tactile feedback to the user through pressure or directional motion.


CONCRETE MICROWAVE MOISTURE METER

Technology Summary
+

Concrete is created based on specific water-cement ratios depending on the application. Extra water, however, is often added to clean concrete chutes or to attain the desired stiffness in concrete mixes. Additional water presents serious strength and durability concerns and concrete that does not meet required strength standards must be removed and rebuilt with a new mix. Quality Control personnel must either take samples to a laboratory site or wait until concrete has hardened to determine whether the appropriate water-cement ratio was used. The Concrete Microwave Moisture Meter utilizes rectangular waveguides to instantly measure the water content of any concrete mix before it hardens. An electromagnetic field is applied to the concrete sample, which polarizes the water molecules. The degree of polarization can then be measured, providing the volumetric ratio of water in the concrete.


CONTINUOUS REAL-TIME MONITOR TO DETECT ACUTE KIDNEY INJURY RISK

Technology Summary
+

Acute kidney injury (AKI) is a common surgical complication that affects up to 50 percent of ICU patients. It leads to increases in mortality, hospital stays, and costs. Early detection of changes in renal function is critical to prevent disease progression. Existing methods of monitoring kidney health, however, take hours to obtain results and fail to detect changes until after kidney injury has occurred. The proposed technology enables continuous, real-time monitoring of urine flow and kidney health. Low oxygen is a major determinant of AKI. By placing a probe in pre-existing catheter technologies, the monitor measures oxygen tension in the urine to facilitate early detection and intervention of AKI.


CORRECTING NONLINEAR CALIBRATION IN MASS SPECTROMETRY

Technology Summary
+

Stable isotope labeled internal standards are widely used in mass spectrometry. Isotopic interference between signals of the internal standard and the analyte, however, causes nonlinear calibration, which limits the dynamic range and produces inaccurate assessments of analyte concentration.

Application of two equations to mass spectrometry expands the range of analysis by generating a more accurate fit and correcting the inherent bias for many analyte/internal standard pairs. This process allows for corrections to nonlinear data, enabling the use of analyte/internal standard combinations that would otherwise be impractical. This approach removes much of the difficulty associated with use of stable labeled internal standards, such as labeling, isotope effects, and cost.


CRISPRi EPIGENOME MODIFICATION TO TREAT MUSCULOSKELETAL DISEASE

Technology Summary
+

Musculoskeletal diseases are a leading cause of disability worldwide. Current treatments for osteoarthritis and low back pain (LBP), however are largely palliative and fail to prevent disease progression. Stem cell delivery treatment to the intervertebral disc in clinical trials may work, albeit on a short-term basis as cells succumb to inflammatory responses. The new technology is an innovative CRISPR-based approach that temporarily silences specific pro-inflammatory genes to regenerate the disc to full functionality. This approach promotes cell survival, stem cell differentiation, and immunomodulation under inflammatory conditions. The epigenome editing vector package can be locally injected, or autologous cells can be modified and delivered to replace the lost disc tissue. Studies with dorsal root ganglion demonstrate inhibition of degenerative intervertebral disc neuron activity and preservation of non-pathologic activity.


CYCLIC PEPTIDE LIBRARIES

Technology Summary
+

Cyclic peptide libraries of novel compounds serve as valuable collections for researchers to mine for new therapeutics. The proposed methods for creating cyclic peptide libraries utilize biosynthetic pathways from various organisms. The enzymatic steps are broken into individual components and then reassembled in unique was to generate large collections of novel chemical entities (NCEs).

One method uses amide-linked peptides created in vivo by expression of constructs in E. coli. Another method centers on prenylated compounds created from marine ascidian enzymes, again expressed in E. coli. The final method utilizes natural pathways from sponges to synthesize compounds for libraries. Methods to increase the yield and potency of peptides, specifically cyanobactin and prenylated peptides, in the libraries have also been developed.


DATA EXCHANGE FOR POISON CONTROL CENTERS

Technology Summary
+

Communication between poison control centers (PCCs) and healthcare providers is telephone or fax-based; PCCs do not have access to the Health Information Exchange (HIE). Healthcare providers often make treatment decisions without reviewing all of the supporting documentation due to the delay in transferring information and data errors.

New software streamlines the data transfer process between PCCs and healthcare facilities by facilitating PCC participation in the HIE. The software allows PCC employees to create HL7 consolidated-CDA consultation notes that meet HIE standards using current PCC information systems. The data is then sent through the HIE to healthcare facilities. Healthcare providers can then send information, such as discharge summaries, back to the PCC. This also enables monitoring of hospital cases by poison control specialists because the specialists can parse and display contents of both sent and received documents.


DEBUGGING MACHINE LEARNING SYSTEMS

Technology Summary
+

Developers are unable to debug, optimize, or even understand the processes that generate machine learning outputs due to the complexity of machine learning systems. This “black box” problem of machine learning poses significant limitations to widespread implementation of artificial intelligence.

A University of Utah researcher has developed software for “cracking open” the machine learning black box. This software integrates systems analysis with machine learning to force machine learning systems to express a linear dynamic systems equation. The linear equation is tested in conjunction with a machine learning technique that tests nonlinear relationships. The combination of these techniques enables mapping of machine learning internal processes over time.


DEEP BRAIN STIMULATION TO TREAT DEGENERATIVE CEREBELLAR ATAXIA

Technology Summary
+

Degenerative cerebellar ataxias, a group of disorders associated with progressive degeneration of the cerebellum, affect 1 in 5,000 individuals worldwide and commonly result in symptoms such as gait incoordination, tremor, and falls. No existing treatment consistently reduces motor symptoms. The proposed technology provides a therapeutic strategy for treatment of degenerative cerebellar ataxias via deep brain stimulation. The strategy involves placing electrodes in the cerebellum of subjects suffering from degenerative cerebellar ataxias and stimulating cerebellar nuclei to generate localized neural response. Electrical stimulation of cerebellum has been shown to reduce tremor and fall rates in animal models.


DIAGNOSING BIPOLAR DISORDER USING MAGNETIC RESONANCE SPECTROSCOPY

Technology Summary
+

Bipolar Disorder (BD) is the fourth leading cause of disability among young people ages 10 to 24 globally. BD severely impacts quality of life by causing shifts in mood, energy, behavior, and ability to function. Many people suffer for years before obtaining an accurate diagnosis. New evidence links mitochondrial dysfunction in the brain to Bipolar Disorder. Indicators of mitochondrial function in the brain can be measured using 31- Phosphorus Magnetic Resonance Spectroscopy (31P-MRS). A novel algorithm that compares mitochondrial function, as determined by 31P- MRS scans, to normal levels provides objective and reliable diagnoses. Additional scans could assess efficacy of prescribed treatments by comparing current mitochondrial function to patients’ initial levels.


DIAGNOSTIC TOOL FOR MAJOR DEPRESSIVE DISORDER AND BIPOLAR DISORDER

Technology Summary
+

Similar presenting symptoms make it difficult to distinguish between Bipolar Disorder (BD) and Major Depressive Disorder (MDD) leading nearly 70 percent of patients to be misdiagnosed initially. Incorrect diagnoses results in delays in appropriate treatment and increased costs to the healthcare system. Adolescents experience higher choline levels in the anterior cingulate cortex when suffering from MDD than BD. Magnetic Resonance Spectroscopy (MRS) provides information regarding the biochemistry of specific regions in the brain. A novel algorithm, developed by researchers at the University of Utah, processes spectroscopic data to provide total choline levels, which can then differentiate between the two diseases. Additional scans can be used to assess efficacy of prescribed treatments for both diseases by comparing current choline levels to the patient’s initial scan and levels of healthy patients.


DIAGNOSTIC, PROGNOSTIC, AND THERAPEUTIC BIOMARKER FOR EWING’S SARCOMA

Technology Summary
+

Ewing’s Sarcoma is an aggressive and highly metastatic bone or soft tissue associated tumor in children and young adults. These tumors frequently progress undetected until they metastasize, whereupon the mortality of the disease greatly increases. Many tumors develop resistance to current first-line treatments, yet no tool exists that distinguishes prior to treatment between resistant and sensitive tumors.

Glutathione-S-transferase M4 (GSTM4) has been identified as a major contributor to tumorigenesis and drug resistance in Ewing’s Sarcoma. Patients with higher levels of GSTM4 typically have worse treatment outcomes, meaning determination of GSTM4 expression levels should enable earlier diagnosis and serve as a predictor for patient outcomes. Furthermore, reduction of GSTM4 levels increases sensitivity of Ewing’s Sarcoma cells to chemotherapeutic agents and reduces oncogenic transformation.

 


DRUG-FREE TARGETED TUMOR KILLING WITH MULTIMERIC ANTIBODY CONJUGATE

Technology Summary
+

Monoclonal antibodies show limited clinical efficacy as a single agent therapy for solid and blood cancers. The requisite high doses result in undesired adverse immunogenicity and toxicity. Conjugating antibodies to cytotoxic drug shows durable clinical response. However antibody drug conjugate designing is complex, with knowledge of linkers, drug and antibody combinations in the context of a specific cancer. The novel therapy describes a new approach for modifying and improving antibody avidity by using graphene oxide (GO) as a targeted delivery scaffold. The GO-based aqueous composition allows non-covalent association of multiple antibody molecules on individual GO molecules, resulting in high efficacy antibodies.


DYE CARRIER FOR DIAGNOSTIC IMAGING OF BODY TISSUES

Technology Summary
+

Fluorescence microscopy enables the study of molecular and morphologic changes in biological specimens with micrometer resolution, providing valuable diagnostic information. Fluorescence microscopy is difficult to use for examination of living tissue, however, because of the need for close association between microscope instrumentation and the imaged tissue, as well as the high concentration of fluorescent dyes required for microscopy.

A disposal dye carrier attached to imaging instruments allows physicians to diagnose tissue without extracting tissue from the body. The carrier consists of a foam-hydrogel composite filled with fluorescent dye. The carrier releases the dye to diffuse throughout the tissue to a depth of 1 mm. Dye release is controlled by the composition of the carrier. The carriers are designed to be used with in vivo imaging instruments which send and receive light to and from the dye to enable live tissue imaging during diagnostic and surgical procedures. The images provide clinicians with a map of the tissue microstructure.


EARLY-STAGE DETECTION OF PREGNANCY COMPLICATIONS

Technology Summary
+

Almost half of pregnant women experience complications that increase their risk of maternal mortality and perinatal morbidity. When complications are identified early, treatment can reduce the risk of premature delivery and maternal fatalities. Studies indicate that early administration of therapeutic agents, particularly for preeclampsia, reduces the risk of severe complications during labor and delivery by up to 95 percent and decreases incidence of premature births. Fetal health screens, however, have a sensitivity of less than 25 percent before the 16th week, preventing early detection.

A new screening tool identifies pregnancies at risk of disease or prematurity at as early as 12 weeks. The test measures Doppler blood flow velocities to assess coherence between maternal and fetal blood flow, an indicator of various disease states. This enables first trimester detection of fetal and maternal health concerns and allows effective, preventive treatments to start early in the second trimester.


EIGENGENE: PERSONALIZED CANCER DIAGNOSTICS AND PROGNOSTICS

Technology Summary
+

Diagnosis, prognosis, and treatment of solid tumors, such as glioblastoma (GBM) and ovarian serous cystadenocarcinoma (OV), has remained largely unchanged for decades, despite the increased availability of patient genomic data. Many tumors develop resistance to platinum-based drugs, the current first-line treatment, yet no tool exists that distinguishes between resistant and sensitive tumors prior to treatment. Eigengene provides a computational assessment of cancer genomic profiles for personalized prognostics and drug companion diagnostics. Comparing patient data to proprietary signatures, the algorithm predicts patient response to chemotherapy. Predicting patient response to treatment helps guide clinician decisions and ultimately improves patient outcomes.


ELECTRICALLY SHIELDED CONTAINMENT SYSTEM FOR HIGH-COUNT ELECTRODE ARRAYS

Technology Summary
+

Nervous system disorders represent one of the nation’s largest healthcare problems, afflicting more than 100 million people in the United States annually. Electrode arrays are emerging as premier neuroprosthetic interfaces for restoring sensory, motor, and other functions after nervous system damage or disease. While electrode arrays depend on action potentials to function properly, action potentials generated by nerves are relatively weak compared to surrounding physiological signals. This weakness obstructs clear array recording and stimulation.

University of Utah researchers have developed an electrically shielded containment system for high-count electrode arrays to combat signal contamination. This containment system consists of a gold screen that is connected electrically to ground and surrounds the array, reducing electrical noise contamination.


ELECTROMYOGRAPHIC SIGNAL PROCESSING FOR PROSTHETICS

Technology Summary
+

There are over 2 million amputees in the United States, all of whom face challenges that impact their quality of life. Innovations in myoelectric prosthetics are emerging that enable better prosthetic-amputee control and interaction, and displace passive, older prosthetics. Yet, current models of myoelectric prosthetics rely on low degree-of-freedom decoding methods that create obstacles to graded movements and require significant contractile force to stimulate.

Software designed using a Kalman filter enables individual digit, wrist, elbow, and shoulder control for transhumoral and above amputees. The algorithm allows real-time, proportional, intuitive control of the prosthetic, with no need for recalibration. This gives prosthetics capabilities more akin to natural limbs and improves users’ quality of life.


ELONGATE MEMBER REINFORCEMENT WITH A STUDDED COLLAR

Technology Summary
+

In 2017, the American Society of Civil Engineers gave America’s infrastructure a D+, based on the country’s crumbling infrastructure. Fiber reinforced polymer (FRP) composites, which are lightweight, corrosion resistant, and have a high strength to weight ratio, show promise for strengthening and rehabilitating structures, but can be cost prohibitive. The proposed device utilizes FRP to strengthen or reinforce columns, pipes, and walls at a lower cost. The device secures a support layer to a structure with a collar to facilitate load transfer between the structure and support layer, enhancing the overall strength and durability of the structure.


ENVIRONMENTAL DISPERSION SOFTWARE

Technology Summary
+

Continuous commercial and residential developments have negatively impacted the environment by constraining resources, while increasing noise and air pollution. Computational dynamics solvers simulate the interaction between infrastructure and the environment, allowing civil engineers to understand environmental variables that impact design. Use of these simulations, however, is limited by time constraints because model development often takes multiple days.

The Environmental Dispersion Software evaluates various design scenarios by rapidly simulating relevant climate variables. The software uses traditional central processing and new graphics processing units to produce solutions based on buildings, vegetation, and other parts of a city more rapidly than traditional computational dynamics solvers. The Environmental Dispersion Software computes wind speed/direction, turbulence, air temperature, humidity, and atmospheric radiation in a given area. The software also evaluates how these factors, as well as dispersion and deposition of particle contaminants, will affect buildings and vegetation. The software can be used to evaluate urban designs for optimal air quality, energy use, and environmental impact.


ERYTHROPOIETIN GENE DELIVERY FOR MYOCARDIAL INFARCTION TREATMENT

Technology Summary
+

Myocardial infarction is the leading cause of morbidity and mortality worldwide. Although cardiac remodeling can maintain normal function initially, it gradually becomes maladaptive, leading to adverse outcomes, including heart failure. A novel approach for delivering plasmid human erythropoietin gene through an Arginine-grafted Bioreducible Polymer shows promise as a gene therapy tool for treating myocardial infarction. This treatment reverses post-infarct cardiac remodeling and restores heart function. Research suggests that this bioreducible delivery vector can revive the therapeutic potential of erythropoietin and other cardioprotective genes, allowing use as an effective treatment.


ESOPHAGEAL SAMPLING S-CATHETER

Technology Summary
+

Eosinophilic esophagitis (EoE) is one of the most common reasons for food impaction and dysphagia among adults, with some studies indicating as many as 10 cases per 100,000 persons annually. Monitoring the disease involves multiple invasive biopsies and endoscopies requiring anesthesia. There is no cure.

A U researcher has developed a catheter as a non-invasive sampling tool for eosinophils in the esophagus. This catheter assumes a linear profile upon insertion, but once the stylet is removed, it becomes s-shaped. The catheter’s s-shape enables sufficient mucosal sampling and contact with the esophageal wall. The catheter can be used without anesthesia, enabling point-of-care diagnostics.


FASTCONTEXT

Technology Summary
+

ConText, a widely used, open-source clinical natural language processing algorithm, tries to confirm that information extracted from a clinical note applies to the appropriate patient and visit and is not negated. The process, however, is time consuming as it must follow over 600 rules. FastConText is a more efficient, scalable implantation of ConText suitable for large- scale clinical natural language processing. The algorithm determines contextual features of information from clinical notes by identifying negation, temporality, and experience using generalized rule processing. The new algorithm adds additional rules that improve both the speed and accuracy of natural language processing.


FINBLADE: SUBCUTANEOUS CUTTING DEVICE

Technology Summary
+

Certain medical procedures, such as carpal tunnel release, require cutting subcutaneous tissue. In many of these procedures, swelling or malformation of tissues impacts nearby nerves and causes pain. Cutting the swollen or malformed tissue can provide more space for impinged nerves. In order to cut the targeted tissue, however, a cutting device must be able to both reach the targeted tissue and be removed from the patient. In open surgery for carpal tunnel release, clinicians make a 5 cm incision that takes up to 14 days to heal. Endoscopic surgery, the current alternative, entails two 1.5 cm incisions and has a 4 – 8 day recovery time. The Subcutaneous Cutting Device can be inserted like a needle or with the aid of a sub-centimeter incision, lowering recovery time substantially. Ultrasound allows visualization of the affected structure, as well as the device, in real time, thereby preventing misplacement of the needle and cutting of the wrong tissue. This device has additional applications for cyst punctures or incisions, muscle release, nerve incision, adhesion release, and tenotomy.


FLEXIBLE LOAD TRANSDUCER (FLEx) SENSOR

Technology Summary
+

Sensors used to measure force load under the foot rely on strain gauge technologies that are often inaccurate and expensive. The proposed technology is a conformable, biomechanical force sensor that increases accuracy and decreases costs. This novel sensor is comprised of a flexible and compliant substrate with discrete sensors and electronic circuitry embedded in a protective cushioning layer. The sensors includes power, measurement, calibration, and data communication functions compatible with load monitoring, force sensing for touch human or robotic interfaces, gait monitoring and shoe inserts for medical, prosthetic, and athletic performance evaluation.


FOOD & WATER BIOHAZARD ANALYZER

Technology Summary
+

Current pathogen detection methods are time and cost intensive, requiring over 24 hours for testing and analysis. The proposed biohazard analyzer enables simultaneous detection of 15 different bacteria, protozoa, and viruses within three hours. The analyzer utilizes magnetic beads and antibodies to capture target pathogens. The resulting nanoshells allow even low concentrations to be detected through comparison with known samples. This device is transportable, enabling use as a laboratory bench-top sensor or as a fully automated sensor for remote areas, such as military deployment. This has potential applications for use in military deployment, humanitarian efforts, disaster relief, and food and beverage manufacturing.


FUNCTIONAL PROFILING OF THE MICROBIOME

Technology Summary
+

Human gut microbiota play an important role in the immune system and de novo synthesis of essential vitamins. Little is known, however, about how gut microbiota influence overall health and disease. Functional Profiling of the Microbiome will aid researchers, physicians, and patients in understanding the role of gut microbiota in human health and wellness. The proposed technology provides a way to quickly and easily identify the enzyme activity present in a sample. Coupled with existing metagenomics, this functional profile will provide insight into the effect of diet and medication use on the gut and the relationships between microbial functionality and disease progression.


FUNCTIONALLY GRADED TANTALUM/NIOBIUM CARBIDE

Technology Summary
+

Hard materials resist wear, but are prone to fracture. Tough materials resist fracture, but are susceptible to wear. Ideally, a material should possess a combination of high hardness and high fracture toughness, but designing such a material has proven difficult. A novel tantalum or niobium carbide (TaC or NbC) results in a composite with superior strength and fracture toughness. The material consists of two-phases, a hard carbide on the outside and a tough carbide in the interior. The carbide substrate can be produced using conventional powder processing methods to fabricate complex shapes and surface-treatment. The proposed material outperforms tungsten carbide in applications that require hardness, fracture toughness, and corrosion resistance.


GAL KINASE INHIBITOR TO TREAT GALACTOSEMIA

Technology Summary
+

Galactosemia is a rare, inherited condition where people cannot metabolize galactose due to mutations in GALT, GALE, and GALK1. The disorder appears in 1 in 40,000 live births and can be fatal if left untreated, but no long-term treatment exists. Although removal of galactose from the diet can prevent death, galactosemia patients still experience intellectual and speech deficits, motor function loss, ataxia, and infertility due to galactose accumulation.
Accumulation of Gal1-p results in a unique form of endoplasmic reticulum stress in fibroblasts of patients with Galactosemia. A small molecule GALK inhibitor can alleviate symptoms of Galactosemia by reducing accumulation of human galactose. GALK inhibitor leads have been identified for testing in animal models. Patient cell lines, crystal structure data, and animal models for Galactosemia are available for rapid development of an IND enabling candidate.


GATE: A SUPERIOR PSYCHIATRIC CONSULT SOLUTION

Technology Summary
+

Psychiatric specialists consulting on a case rarely have sufficient time to

gather input from the primary care physician, patient, and patient’s family prior to engaging. GATE facilitates efficient, structured, and patient- focused communication between primary care providers and specialists, by providing a convenient web-based means for gathering input from the patient and their family. Each patient/family uses a unique log-in to GATE to access the brief assessment that will be provided to the psychiatrist. The consultation system includes a web-based evaluation tool that collects information from families about a patient and then presents that de- identified information to the specialist. The psychiatrist can then review provided information and use GATE to provide the primary care physician with a recommendation.


GENE THERAPY FOR RETINOPATHY OF PREMATURITY

Technology Summary
+

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. It is becoming more common as emerging countries develop technology to save preterm infants, but lack resources to provide optimal care. In the United States, 14 percent of childhood blindness is attributed to ROP, while in some developing nations estimates surpass 20 percent. Treatments of severe ROP include 1) laser ablation of peripheral avascular retina, which destroys developing retina; or 2) intravitreal anti- VEGF agents, which can lead to persistent avascular retina and even blindness. The University of Utah is developing a gene therapy based novel approach by targeting STAT3, that unlike anti-VEGF treatment, will not interfere with physiologic retinal vascular development. This approach would stop the growth of abnormal blood vessels in the eye, prevent retinal detachment, and preserve vision.


GENETIC DATABASE WEBSITE

Technology Summary
+

The most common method of identifying de novo mutations involves searching research databases, such as PubMed, for specific genes. With almost 15,000 articles related to de novo mutations, identifying particular genes and their associated diseases is time consuming.

The Genetic Database Website provides access to curated information regarding all de novo mutations observed and reported in scientific literature. Using the database, researchers can check whether a de novo mutation in a gene or a more specific locus has been reported previously. Those investigating rare diseases will be able to eliminate some findings quickly as non-causally related if that mutation is observed across other, more common diseases in the database.


GLASS PHASE PLATE FOR HIGH PRECISION WAVELENGTH EXTRACTION

Technology Summary
+

Traditional localization microscopy uses photo-chemical blinking or switching of fluorescent molecular tags to generate super-resolution (SR) images. Obtaining multi-color images, however, requires filters, which limits the number of colors of fluorescence that can be used at one time.

The etched glass phase plate modifies the point-spread function to have a recognizable shape at each wavelength. Different spectral signals can then be measured without using filters or polarized spatial light modulators. The spectral information may also be rendered in conjunction with an SR image. The phase plate can be tailored to individual imaging needs by adding thin films to affect the slope of the dispersion curve. This may provide increased sensitivity to a desired range of wavelengths. The phase plate can be easily inserted into the Fourier plane of an existing microscope or imaging system.


GYNECOLOGICAL-CANCER-PATIENT-DERIVED XENOGRAFTS

Technology Summary
+

Endometrial cancer (EC) is the most common gynecological malignancy in the United States, with over 49,000 new cases each year. Current animal tumors have insufficient structural architecture and tumor heterogenity and lack of effective drugs hinders treatment of EC. This complicates tests performed to predict patient response to certain treatments. A novel model for the development of highly personalized gynecological tumors has been created. Orthotopic implantation of tumors derived from patients with gynecological malignancies result in mouse models that simulate human oncogenesis over multiple generations. The model also provides an excellent model for translational studies.


HISTO!: A PATHOLOGY TRAINING APP FOR MEDICAL STUDENTS

Technology Summary
+

Histology, the study of microscopic anatomy, is a cornerstone of basic medical curricula and a common first-year course. Medical and dental histology students often use outdated studying resources with grainy images and minimal detail.

Histo!, an interactive human histology app, offers instruction in biochemistry, physiology, and pathology. It contains 440 photomicrographs that illustrate 1,964 identifications, each with a detailed description. Approximately two-thirds of the identifications involve naming structures, while the rest focus on functions, diseases, and molecular components. The app includes two modes for self-testing mastery.


HRQOL-38

Technology Summary
+

Tracking health-related quality of life (HRQOL) helps identify health disparities, evaluate progress on achieving health goals, and informs public policy. Existing surveys are inaccessible for certain members of the target population and too lengthy for practical health surveillance. HRQOL-38 is a theory-based, self-administered survey designed to be accessible to individuals with mild to moderate intellectual or developmental disabilities. HRQOL-38 features 38 items across 8 quality of life domains. It is a self-assessment, which increases accuracy of data to better inform program planning and evaluation. While currently in a paper and pencil format, the survey could be utilized in an app or web-based solution.


HYDROGEL AND COACERVATE BASED ADHESIVES

Technology Summary
+

Adhesives and sealants are ubiquitous in numerous industries, including automotive, aerospace, packaging, and construction. Many adhesives and sealants, however, are toxic, which results in harmful effects on health and the environment. Two new adhesives formed without toxic byproducts have been developed. The first is a complex coacervate based adhesive formed by mixing oppositely charged polyelectrolytes (PEs). The PEs can rapidly change forms as solution conditions alter, allowing the adhesive to be injected as a liquid and then coagulate into a solid hydrogel adhesive as pH or salt concentrations adjust. Gelation would keep the material in place to fill voids and the material could be either biodegradable or non- biodegradable depending on the application. Initially designed for physiological conditions, the coacervate offers potential application in depots, fillers, and adhesives. The second adhesive is a viscoelastic hydrogel with an adhesive surface comprised of cross-linked acrylic polymers. The new adhesive exhibits resilience and high stiffness at low strains but low resilience and high flexibility at high strains. Heat is released as covalent bonds break and the hydrogel recovers its original stiffness as strain is alleviated, preventing failure. The adhesive layer adheres to wet and submerged substrates, enabling underwater use.


HYDROGEL-BASED LOCALIZED DRUG DELIVERY FOR GYNECOLOGICAL AND OBSTETRICAL CONDITIONS

Technology Summary
+

Therapeutics for gynecologic and obstetric conditions are most commonly provided via oral or intramuscular routes of administration. Oral administration is convenient but results in poor bioavailability and unwanted side effects. Intramuscular injections facilitate cellular absorption but pain and infections can reduce patient compliance. The proposed technology enables vaginal delivery of therapeutics for gynecologic and obstetric conditions. A glycol-chitin thermosensitive, mucoadhesive hydrogel adheres to the inner wall of the vagina and delivers therapeutics, such as progesterone, directly to the vagina. The drug can be released over time, increasing efficacy of drugs designed to target specific uterine tissues.


IMMUNO-CELL THERAPY FOR BLOOD DISORDERS WITH NOVEL TARGETS

Technology Summary
+

Multiple Myeloma (MM) is an incurable plasma cell malignancy with significant morbidity and mortality. While proteasome inhibitors and immunomodulatory agents have improved treatment outcomes, most patients eventually relapse. The Cancer Immunotherapy program at Huntsman Cancer Institute has established a comprehensive portfolio of novel immuno-oncology therapeutic candidates for hematologic malignancies and solid tumors. The proprietary biologics discovery platform includes a fully human antibody phage display library with a diversity of greater than 1010 clones. A number of monoclonal antibodies and CAR T cells against surface antigens, blocking antibodies against cytokines, and immune checkpoints are being advanced. The lead immunotherapy candidate is a monoclonal antibody and CAR T cell therapy targeting a novel surface receptor CD229. CD229 is selectively expressed on MM chemotherapy resistant precursor cells making it attractive for clinical development as a potential cure for MM. Extended applications include B-cell malignancies.


IMPACT THROMBOELASOMETRY: POINT OF CARE VISCOELASTIC TESTING

Technology Summary
+

Trauma remains the leading cause of death for individuals under 40, with hemorrhaging contributing to 40 percent of those deaths. Trauma-induced coagulopathy (TIC), a condition that impairs blood’s ability to clot, occurs in almost half of serious combat casualties. Identification of TIC may direct hemostatic resuscitation and foster production of clots in injured patients. Current diagnostics rely on time-consuming tests performed in hospital laboratories, but a point-of-injury test for TIC could allow rapid treatment that controls hemorrhaging, while avoiding potential over- treatment. ITEM is a novel test that determines viscoelastic behavior of blood to detect coagulopathy. Proof of concept experiments were indicative of coagulopathy.


INHIBITION OF ANGIOGENESIS AND LYMPHANGIOGENESIS USING TARGETED MORPHOLINOS

Technology Summary
+

Vascular endothelial growth factor (VEGF) is a signal protein produced by cells that stimulates lymphangiogenesis and angiogenesis. When VEGF is overexpressed, it can contribute to various disease conditions, such as cancer and age-related macular degeneration. The proposed technology modifies the polyadenylation mechanism, serving as a new drug for cancer and neovascularization disorders. It presents a new strategy for inhibition of angiogenesis and lymphangiogenesis through manipulation of VEGFR isoform expression. The VEGFR1 and VEGFR2 genes produce both membrane-bound and soluble isoforms, which have different effects on these processes. The membrane bound isoforms promote angiogenesis, while the soluble isoforms suppress lymphangiogenesis.


INHIBITION OF HERPES VIRUS REPLICATION

Technology Summary
+

Available antiherpesvirus drugs target viral DNA polymerases. These drugs are usually highly effective, although toxicity and development of resistance limit their use. Derivatives of Spironolactone, an existing drug used to treat congestive heart failure, cirrhosis, and kidney problems, inhibit replication of Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and Herpes Simplex Virus (HSV). These derivatives exhibit decreased anti-mineralocorticoid activity and increased antiviral activity. The proposed therapeutic degrades cellular transcription factors related to virus production, lytic replication and gene expression. Use of this therapeutic has the potential to prevent KSHV and treat infectious mononucleosis, CMV, and HSV infections.


INHIBITORS OF INFLAMMATORY INJURIES CAUSED BY NEUTROPHIL EXTRACELLULAR TRAPS (NETs)

Technology Summary
+

While NET formation is a potent mechanism for killing microbes, emerging evidence suggests that NETs potentiate vascular and tissue injury in inflammatory syndromes. In fact, NET formation contributes to several inflammatory disorders including acute lung injury, sepsis, small vessel vasculitis, systemic inflammatory response syndrome, and chronic autoimmune diseases. In addition, recent results indicate NETs may also be involved in some cancers. New inhibitors block NET development and prevent further tissue injury associated with inflammation. This new technology targets inappropriate, maladaptive, and injurious NET formation without altering other key neutrophil activities such as chemotaxis, phagocytosis, and ROS generation.


INTELLIGENT HYDRATION SYSTEM

Technology Summary
+

Endurance activities, such as mountain biking, running, hiking, and military operations require proper and continuous hydration. Hydration systems traditionally used for outdoor activities require manual monitoring of water levels, either by gauging a pouch’s weight change, inspecting the bladder, or using commercially available flowmeters. Lack of accurate information can lead to underestimation of remaining water and potentially dangerous situations.

The Intelligent Hydration System is a fluid level sensor that enables easy-to-use bladder monitoring and can be integrated with most commercial hydration backpacks. The technology consists of two sensors connected to a small circuit that can be attached to either side of any pre-existing reservoir. A light-emitting diode display communicates the bladder’s fluid level to the user. The kit provides an accurate reading of the fluid content, irrespective of shaking and movement.


JOINT FUSION/LIMB GROWTH KEEL PLATE

Technology Summary
+

Almost 200,000 orthopedic procedures involving metal bone plates are performed annually in the United States. These bone plates facilitate healing in fractured bones by holding the bone in place. Bone plates, however, are often oversized, which causes irritation in the surrounding soft tissue and hinders bone growth.
A new orthopedic bone plate, made of stainless steel or titanium, has been developed for securing bones during joint fusion procedures. This plate is designed for procedures with limited soft tissue coverage and avoids tissue damage caused by traditional plates. The internal side of the plate includes a T-shaped cross-sectional keel that has a thin edge for enhanced integration in the bone. The plate can withstand high levels of torsion and 3-point bends, increasing its applicability in small joint procedures. The keel plate can also be used to correct limb deformities in children.


KIRKHAM BIRTHING HARNESS

Technology Summary
+

Studies indicate that giving birth in the squatting position provides many benefits, such as shorter labor, reduced incidence of Cesarean section, and decreased need for forceps, or vacuum deliveries. Most women, however, do not have the upper leg strength required to stay in a squatting position throughout the second stage of labor (pushing), which can last from 20 minutes to 2 hours. The Kirkham Birthing Harness supports women in a squatting position without adding pressure or strain on their arms and legs. The birthing harness comprises thigh, rear torso, and body straps that support the patient. The harness itself is supported by a patient lift or comparable support systems, such as the Hoyer Lift, thus allowing the mother to maintain the squatting position for extended periods without muscle exhaustion.


LINGUISTIC SYMPTOM TRAINING APP

Technology Summary
+

Speech pathology training includes classroom and clinical experience, but students receive little real world experience prior to graduation, which is problematic because most patients do not speak like textbook examples. The Linguistic Symptom Training App serves as a study tool for undergraduate and graduate speech language pathology students. The app uses self-paced training modules to help students identify and categorize linguistic symptoms from a variety of pediatric language disorders. Users access a series of sentences that mirror real speech patterns and sentence structures, then are asked to make quick judgements about whether or not each sentence contains symptoms for a specific disorder. The app could also be used to meet continuing education requirements for certified speech language pathology (SLP) clinicians.


LIQUID GLUE BIOPSY: NOVEL METHOD FOR NON-INVASIVE SKIN SAMPLING

Technology Summary
+

Nucleic acid diagnostics help identify and monitor diseases. Traditional methods for the recovery of nucleic acids and proteins from the skin, however, involve the use of a scalpel or other sharp instrument. These sampling methods require local anesthesia, create bleeding wounds, produce scarring and generally necessitate sutures to close the skin. Adhesive tape has also been used to obtain skin samples, but requires repeated applications of tape strips to inflamed lesions. This new technology provides an innovative, simple approach to recover skin samples using liquid adhesives. A novel glue is painted onto the skin and then overlaid with support materials. Removing the glue facilitates harvesting of skin samples with ample material for assay testing. This method provides a one-step, efficient, and non-invasive means for recovering nucleic acids from skin lesions of all sizes.


LIQUID TO SOLID INTRAVASCULAR EMBOLIC

Technology Summary
+

Embolization is a minimally invasive therapy that provides stable and localized occlusion of arterial blood flow (transarterial embolization, TAE) with applications in rapidly growing markets of interventional radiology and cancer treatment. However, transcatheter arterial chemoembolization (TACE) treatments have severe shortcomings due to chemotherapeutic toxicity, off-target embolization, and non-degradability.

University of Utah researchers have developed an innovative biopolymer, composed of silk-like elastin proteins that overcomes the above shortcomings by combining the best properties of both liquid and solid embolics for TACE. The SELP embolic polymer is liquid at room temperature permitting localized delivery through smaller diameter catheters that transitions in vivo to a solid, like a DEB, providing stable occlusion. This liquid to solid embolic enables pinpoint embolization of tumor-feeding arteries and can also be used to deliver therapeutics.


LIVE-CELL ASSAY FOR NEURONAL ACTIVITY

Technology Summary
+

Synaptic assays are used to measure neuronal activity in disease and drug research for neurodevelopmental disorders. Existing assays rely on visualization or electrophysiological analyses, but they provide variable results because they fail to track changes in the same population of neurons over time. These methods are also labor intensive, expensive, and unsuitable for large-scale drug screens.

The live-cell assay facilitates quantitative measurement of neuronal activity. The assay involves infecting cultured neurons with an activity-dependent promoter, and then repeatedly measuring the accumulation of photon-yielding enzymatic activity in the medium. This method provides longitudinal tracking of neuronal activity, while identifying small molecules that regulate synapse development and function. The technology will be used as a drug screen in normal synapse development to narrow the field of drug candidates that affect neuronal activation.


MEASUREMENT OF TOTAL, FREE, AND AUTOANTIBODY-BOUND BIOMARKERS

Technology Summary
+

The presence or absence of specific biomarkers can be predictive in the diagnosis of various conditions. The majority of diagnostic tests for quantitative measurement of biomarkers use immune-based techniques, which utilize detection antibodies. In individuals with autoimmune disorders, however, patient autoantibodies affect the immunoassay and cause inaccurate results or misdiagnosis.

The proposed method binds antibodies to specific analytes, converting all target analytes in the sample to antibody-bound form. This creates enriched fractions that facilitate more accurate measurement of biomarker concentration. This method has been used for quantification of total thyroglobulin in serum and plasma samples to detect recurrence of thyroid carcinoma. This approach can also be applied to other biomarkers where autoantibodies can adversely affect the assay used to detect the biomarker.

 


MEDICAL GAS DELIVERY DEVICE

Technology Summary
+

Patients with diseases of the heart and lungs, such as pulmonary hypertension, may not comply with use of a face mask or nasal cannula for delivery of medical gas. Movement can also render medical gas delivery methods ineffective if a patient turns their head away from the gas source. The proposed medical gas delivery device could be incorporated with a hat, hood, pillow or other garment to provide supplemental oxygen and other gases near the face of patients who struggle with a face mask or nasal cannula. The device permits patients to move without interrupting the flow of medical gas. The initial hoody device delivers medical gas from a source near the waist through a tube that expels the medical gas near the patient’s face. This reduces the chance of air-flow disruption, common with long tubing, and improves patient compliance due to the increased comfort of the delivery device.


MEDICAL HOME PORTAL

Technology Summary
+

Children and youth with special health care needs (CYSHCN), or those at increased risk for chronic physical, developmental, behavioral, or emotional conditions, have increased need for medical and education services. Coordination of care for CYSHCN often involves a large number of people, such as clinicians, care coordinators, family members, home care professionals, and school staff. Inadequate care coordination can lead to delays in diagnosis and treatment, diminished patient and physician satisfaction, increased cost of care, and reduced quality of life. Since CYSHCN receive care from health and non–health professionals working in different settings, care-related data can be fragmented across multiple information systems. As a result, finding the information needed to provide the best care can be daunting. Medical Home Portal provides high-quality, family-focused, and peer-authored information for families and physicians. The portal offers clinical content for nearly 50 rare chronic conditions and provides access to community resources to improve quality of care and outcomes for CYSHCN. It incorporates clinical guidelines, alerts, recommendations for screening and links to local services.


METHOD FOR SECRET KEY EXCHANGE VIA SPATIAL AND TEMPORAL PHYSICAL LAYER PROPERTIES

Technology Summary
+

Secret key establishment between two entities is a fundamental requirement for private communication. The most common method for establishing a secret key is by using public key cryptography. The public key method, however, is vulnerable to security breaches, consumes significant amount of computing resources, has been relatively slow, and requires a third party authentication service. The proposed method represents a fundamental advancement in secret key exchange for wireless communications by avoiding use of a public key. It allows for the exchange of a random secret key between two transceivers by measuring particular bio-directional properties of the channel, which cannot be read at a third location. The properties may include measurements while moving a transceiver to different locations to observe the secret key. The method takes advantage of the changing space-time wireless channel in order to generate a rich and robust key which can be shared on a wireless link without communicating the secret key.


METHODS TO TREAT DRY MOUTH ASSOCIATED WITH SJORGEN’S SYNDROME

Technology Summary
+

Sjogren’s Syndrome is a condition that causes immune cell infiltration into the salivary and lacrimal glands, leading to dry mouth and dry eyes. No cure exists and treatments only somewhat alleviate symptoms. Two novel methods for treating, and potentially curing, Sjogren’s are under

development. The first uses Resolvin D1 to improve salivary gland epithelial integrity in cytokine-damaged cells. Through localized delivery or intravenous administration for systemic delivery of a proprietary combination into glands to treat dry mouth and dry eye. The second uses a fibrin-based hydrogel used to regenerate salivary glands. The hydrogel is combined with functional groups, which are chemically conjugated to fluorescent FH to form new salivary tissue and eliminate dry mouth.


MeVal: PERSONAL HEALTH ASSESSMENT DATA COLLECTION TOOL

Technology Summary
+

Online module combining vetted patient-reported outcomes assessment tools with data analytics to deliver consistent and reliable data for use in clinical, financial, and research applications.

Patient-reported outcomes (PROs) are the leading indicator of health care service quality. Collecting patient data, however, often requires manually aggregating and calculating outcomes. Complexity and time constraints limit the use of PROs in many healthcare systems. MeVal allows patients to report information electronically, which is then stored within their electronic medical record (EMR). MeVal combines the best PRO data assessment tools with business intelligence reporting infrastructure. This system facilitates an integrated and seamless capture and visualization of PROs, and reveals data trends for clinical, financial, and research purposes. The module also allows clinicians to access patient assessments in real- time for immediate incorporation into treatment plans.


MICROTEXTURING OF PROSTHETIC KNEE AND HIP JOINTS TO IMPROVE LONGEVITY

Technology Summary
+

More than 200,000 total hip replacement (THR) surgeries are performed in the United States each year. THR surgery is needed when the articular cartilage cushioning of the joint deteriorates, causing pain and disability.

Over time, polyethylene wear particles absorb into the tissue around the prosthetic joint, which may cause inflammation, mechanical instability, or dislocation of the prosthetic joint components. As a result, patients seek revision THR surgery or live in discomfort. A new microtexturing technology places microscale texture features or “dimples” on the CoCrMo bearing surface of the prosthetic joint. The microtexture features form microhydrodynamic bearings that reduce friction and polyethylene wear.


MIMO SYSTEM AND METHODS

Technology Summary
+

WiFi and LTE offer large theoretical throughput rates rarely attained by individual users due to the use of multiple input, multiple output (MIMO) systems to increase network capacities. With data consumption projected to increase by 1000x in the next decade and MIMO stalled, carriers are looking for new technologies to overcome power and processing bottlenecks. Markov Chain Monte Carlo (MCMC) can improve MIMO performance by quickly and reliably separating and routing data. The proposed technology is a MCMC MIMO decoder with Gibbs Sampler Excitation that operates at higher signal-to-noise ratios. The MCMC detector can integrate with existing tower structures and customer premise equipment enabling a 4-8x increase in network capacity at low costs. A search algorithm and adaptive filter techniques that streamline data reception and reduce signal-processing noise within MIMO systems to further increase performance and capacity have also been developed.


MIND SHIELD

Technology Summary
+

Each year, more first responders die of suicide than job related injuries. Millions of dollars are spent annually to provide these individuals with physical protective equipment, but less is done to help emergency personnel deal with emotional trauma. Many first responders struggling with post-traumatic stress disorder (PTSD) avoid seeking help out of fear that they will be seen as weak or vulnerable. Rather than attempting to repair psychological damage after such traumatic instances, Mind Shield provides mental and emotional training proactively. Using three 90 minute sessions, first responders are taught skills to reduce symptoms, address triggers, and communicate effectively. Ultimately, Mind Shield acts as additional, unseen protective gear for first responders to preserve their mental health.


MODIFIED NASAL CANNULA FOR SEAMLESS PRE-OXYGENATION TRANSITION

Technology Summary
+

Anesthesiologists pre-oxygenate patients using an oxygen mask prior to intubation. Once the oxygen mask is removed, this supply of oxygen is normally sufficient for a healthy adult patient to be intubated within three minutes. Failure to intubate within this timeframe leads to hypoxia, brain injury, or death. The current industry standard is to use a bag valve mask (BVM) during pre-oxygenation. After pre-oxygenation, the BVM is removed for intubation to occur. Research has demonstrated use of a nasal cannula prior to and after the BVM increases the safe apneic window. Removing and replacing the nasal cannula for the BVM, however, disrupts the workflow. The proposed technology modifies a traditional nasal cannula by replacing the rigid tubing with collapsible tubing, allowing the nasal cannula to stay in place during pre-oxygenation and ventilation. This simplifies workflow and provides anesthesiologists with more time to intubate patients.


MODULAR OSSEOINTEGRATED, POROUS-COATED PROSTHETIC ABUTMENT SYSTEM

Technology Summary
+

Percutaneous fixation implants anchor a prosthesis to a selected bone, which increases mobility, but can cause infection, skin regression, and early implant failure. Such complications require surgery to replace the implant and involve long recovery periods that reduce the quality of life for amputees. The Modular Osseointegrated, Porous-coated Prosthetic Abutment System (MOPPAS) alleviates complications associated with existing fixation systems through the use of removable modular components. Interlocking sleeves and an end cap fasten MOPPAS components together. Portions of the implant can be removed and replaced individually, which increases the longevity of implants systems and reduces more complicated, follow-on surgeries necessary to replace failed implants.


MODULATION OF STEM CELL HOMEOSTASIS

Technology Summary
+

Stem cells typically are stored using cryopreservation with liquid nitrogen. Cryopreservation offers a short delivery window, however, because stem cells will deteriorate and cannot be recovered post differentiation. An innovative approach to storing undifferentiated stem cells enables long term storage. This approach, which stores the stem cells in easily recognizable stem cell pools, prevents the deterioration of stem cells by inhibiting PAS domain-regulated kinase (PASK) and keeping the stem cells primed in a dormant state. This allows stem cells to be maintained under conditions where they would otherwise differentiate, eliminating costs associated with lost stem cells and improving the delivery of stem cell therapeutics. This PASK inhibitor could also be used to preserve stem cells during transport or experimentation.


MOISTURE SENSOR FOR SOIL MONITORING

Technology Summary
+

Water is one of the most valuable resources on the planet, but climate change and population growth have put a strain of the available freshwater supply. The National Integrated Drought Information System reports that 25 percent of land and more than 65 million people in the United States are affected by drought. Despite campaigns and regulations used to conserve water, up to 60 percent of irrigation water is wasted.

A novel moisture sensor facilitates water conservation and smart crop management by monitoring soil conditions. The Moisture & Pressure Sensor consists of a hydrogel coupled with a piezoresistive sensor that measures moisture, pH, and electrolyte levels. The degree of swelling/deswelling in the hydrogel is indicative of soil conditions to provide real time data about water needs. The sensor then communicates with a central unit that controls the irrigation system to ensure automatic, appropriate watering of crops, flowers, and grass.


MONOLITHIC SPINTRONIC OLED MAGNETOMETER

Technology Summary
+

Magnetometers are used for a variety of sensor applications and various magnetometer concepts, each with different advantages and disadvantages. Currently available, low-cost room temperature magnetometers, however, must be calibrated for any environmental conditions under which they are operated. Most magnetometers are calibrated to account for a small range of normal operating conditions (e.g. a temperature range) only.

This monolithic organic thin-film semiconductor magnetometer eliminates the need for calibration. A dielectric thin-film provides electrical and thermal insulation between a thin-film wire, capable of inducing an AC magnetic field, and a layer stack in which spin-dependent electronic transition rates govern a measurable current. Magnetic resonance of the frequency of the AC field and the Larmor frequency of charge carriers in the thin-film device change the spin-dependent transition rates and thus, the electric current. Small electric current changes, indicative of magnetic resonance, reveal the magnetic field applied to the device.


MOTION BASED ENERGY HARVESTER FOR WEARABLES

Technology Summary
+

Self-powered wearables, such as watches, have existed for approximately 30 years. These wearables generate power using an eccentric rotor that rotates with movement. Certain types of motion facilitate energy generation better than others, however, with the motion from walking while being worn on the upper arm, torso, or waist, results in relatively low rates. A new eccentric rotor architecture design that includes a well-tuned rotational spring, improves the amount of power generated while walking by up to 300 percent when a device is worn on the wrist. Electricity is gained by magnetically plucked piezoelectric beams rather than gear train electromagnetic generators and can apply to any low mechanical loss electromechanical transducer.


MULTICOMPONENT NANOCOMPOSITE ELECTROTHERMAL COATING

Technology Summary
+

Electrothermal coatings provide an alternative to metal-wire resistor heating cables in many heating applications. Many coatings, however, use metal fillers that have low conductivity, low sticking coefficients, and short lifetimes, which limits their application to certain surfaces. A new electrothermal coating with multi-component nanocomposites does not require the use of metal particles. The coating is made using low-dimensional carbon nanostructures in polymer solvents for a higher bonding affinity and increased conductivity. The coating binds to a wider variety of surfaces and the conductivity of the material can be adjusted based on the application by varying nanocomposite composition and concentration. This technology requires less input energy to achieve the same output as metal-wire resistor heating cables and has potential use in home, automotive, military, and industrial applications.


MULTISEQUENCE CAPTURE BEAD CONSTRUCTION

Technology Summary
+

Existing high-throughput, fluidics-based RNA sequencing systems are incompatible with short read length platforms and can only capture a single sequence. Additionally, variable regions of T-cell receptor pairs are separated during purification, and existing technology only allows capture of a single sequence making it difficult to accurately determine the existence and relative concentrations of receptor chains. Bi-functional mRNA capture beads, synthesized using reversible oligonucleotide chain-blocking, isolate and amplify two different mRNA sequences while maintaining the pairing information for these sequences. The bead has a proprietary base that blocks chain elongation in order to capture and read the complete variable region of each chain. The multiple reads per bead will provide statistical conformation that the sequence is correct. Initial tests have demonstrated that two different capture sequences can be built onto a single bead, enabling specific capture and amplification of multiple different mRNA species.


MYC-DRIVEN DIAGNOSTIC FOR SMALL CELL LUNG CANCER

Technology Summary
+

Small cell lung cancer (SCLC) accounts for almost 30,000 deaths each year in the United States, with a two-year survival rate of less than six percent. Almost 40 percent of SCLC patients develop resistance to platinum-based chemotherapy, the current first-line treatment. Studies indicate that MYC amplification is associated with treatment resistance and poor outcomes, but little was known regarding how MYC impacts SCLC. Researchers at Huntsman Cancer Institute and the University of Utah have discovered that roughly 20 percent of SCLC patients develop a variant form of the disease, characterized by certain MYC-related biomarkers. The proposed technology detects variant SCLC by identifying the concentration of specific biomarkers in a patient. The technology can also be used to predict patient response to chemotherapy to help guide clinician decisions and improve patient outcomes.


NANOCOMPOSITE-BASED ANTENNA

Technology Summary
+

Implantable medical devices, such as pacemakers and cochlear implants, require wireless communication capabilities. These wireless data transmission systems rely on integrated miniature antennas to transmit patient data and monitor device health. Performance of traditional antennas is limited by size constraints, incompatibility with the body, and muffled signals. The nanocomposite-based implantable antenna combines high conductivity and low stiffness, and allows wireless implantable medical devices to communicate externally without biocompatibility or stability issues. An additional external tattoo or textile antenna could also be placed on the fat layer of the skin to allow deeper placement of implantable devices in the body, while reducing radiative absorption and transmission loss. Using the combined system of implantable and external antennas improves overall implant communication.


NASAL SEPTAL SPLINTS

Technology Summary
+

Surgeries to correct problems in the nasal septum are some of the most commonly performed outpatient surgical procedures. Nasal septal splints provide stability and support to the nasal septum and prevent blood from accumulating following these procedures. Traditional splints typically include pre-cut holes for receiving sutures. Often, these holes are larger than required. This results in movement of the sutures, reduced stability, and allows septal mucous membranes to evaginate through the holes if left in place for more than 14 days.

The proposed technology is a custom cut, plastic nasal splint. These splints sit caudally along the nasal septum and can be sutured in place for two to three weeks. They allow patients more time to heal, while reducing the risk of complications.


NEARLY TRANSPARENT IMAGING SYSTEM

Technology Summary
+

Traditional imaging methods, which are relatively costly and complex, rely on a lens to focus light onto a sensor that records photons. The proposed invention uses an image recording device placed at the edges of a transparent layer to accurately reproduce an image. A small fraction of the light from the outside scene scatters off imperfections in the transparent layer to reach the image-recording device. The full scene is reproduced computationally from the point sources. The image is captured without a lens and without a direct line of sight to the scene. While the system could be used to capture any image, it is applicable specifically to biometrics and automotive machine vision.


NEW PREDICTOR OF BLOOD PRESSURE RESPONSE DURING FAST VENTRICULAR ARRHYTHMIAS

Technology Summary
+

Implantable cardioverter defibrillators (ICDs) detect ventricular arrhythmias and deliver a jolt of electricity to restore normal heart rhythm. The strength of required electric shocks and the inability to predict when future shocks will occur cause pain and anxiety for many patients. Anti-tachycardia pacing (ATP) restores normal heart rhythm without electric shocks, but its use is limited due to concerns that ATP may not terminate severe arrhythmias. The proposed technology utilizes a novel algorithm in conjunction with an ICD to determine whether ATP or electric shock is required to restore normal heart function. The algorithm uses data already collected and stored by the ICD to predict blood pressure response during an arrhythmia by identifying the cycle length and depolarization rate of the sinoatrial node. With this software, clinicians can utilize ATP more effectively and eliminate unnecessary electric shocks.


NEXT GENERATION MULTI-PAYLOAD ANTIBODY DRUG CONJUGATE

Technology Summary
+

ADCs are empowered antibodies designed to harness the targeting ability of monoclonal antibodies by linking them to cell-killing agents to overcome toxicity issues. One of the major limitations of ADCs is having an appropriate linker. The proposed technology improves the linker, making it possible to create an ADC that possesses high specificity and the advantages of macromolecular therapeutics. The technology involves a controlled living polymerization technique that results in a well-defined HPMA polymer-drug conjugate, followed by specific attachment to an antibody to generate a homogenous ADC with an adjustable amount of payload. Lead ADC, RTX-P-EPI (Rituximab conjugated to Epirubicin) has been well characterized for high linker stability, homogenous ADC mixture, and ADC internalization.


NGS STRAIN TYPING APPLICATION

Technology Summary
+

Comparing bacterial strains provides insight regarding the evolution and development of hospital infections. The availability and speed of the analysis is critical to human health and safety. Genomic analysis, however, takes hours, while the data analysis and interpretation is often complex and computationally intensive.
Using k-mer analysis, NGS Strain Typing compares bacterial genomes in minutes. This comparison method analyzes whole genome sequencing data without reference alignment. Rather than spending several hours to compare two genomes fully, an analysis can compare dozens of genomes in minutes. The method can work with a partial reference genome, making it more broadly applicable. NGS Strain Typing is ideal for microbial strain typing, rapid identification of drug resistance or virulent genes, and detection of unique sequences in outbreak strains. The algorithm could also be applied to hospital outbreaks, food contamination, water contamination, product contamination, and regional outbreaks.


NON-INVASIVE IDENTIFICATION OF EOSINOPHILIC ESOPHAGITIS

Technology Summary
+

Eosinophilic esophagitis (EoE) is a chronic disease of the esophagus that affects over 300,000 patients in the United States alone. Diagnosis requires several endoscopy procedures that utilize both visual evaluation and biopsy. At least four biopsy specimens are necessary to confirm a diagnosis. Additional biopsies are used to evaluate treatment efficacy. The cost, invasiveness, and discomfort experienced due to this method of diagnosing and monitoring EOE cause patients to forgo treatment or go undiagnosed. Using heparin as a contrast agent enables non-invasive visualization of eosinophils in single photon emission computed tomography (SPECT) imaging. The polyanion is either radiolabeled or fluorescently labeled and deposited onto the eosinophil degranulation. This provides a novel method for clinical detection and progression monitoring of EoE, as well as other diseases of the esophagus.


NOVEL DELIVERY DEVICE FOR FRAGILE MEDICAL IMPLANTS

Technology Summary
+

Surgical trocars are the most commonly used delivery method for implanting fragile devices in the body. These trocars create pathways in human tissue to help implant small medical devices, but can damage fragile implantable devices in the process. The proposed technology is a micro- and nanotechnology medical device carrier that enables trocars and other delivery devices to deliver fragile objects to a targeted area, safely and securely. The device is bullet shaped and hollow with holes on one side to allow for suturing to hold the implant in place. The tip of the device has a bulb for hemostats to grab and help guide delivery and extraction of the carrier. The bullet shape of the device helps reduce drag while moving through body tissue, and provides continuous protection for the fragile implant during surgery.


NOVEL SCENT DELIVERY DEVICE

Technology Summary
+

Experimental neuroscience and psychophysics often study neural and behavioral responses to scents. In these studies, the subject must be exposed to various scents, but switching from one scent to another takes time.

The proposed scent delivery device switches between scents quickly without mixing or cross-contamination. Multiple scent containing tubes that can house a liquid or solid scent are mounted on the device. Pressurized air expels scents from their tubes to the subject.

The proposed device was developed for applications in research, but also has the potential for use in single-user entertainment experiences. Scent delivery technology is being used more frequently in entertainment, but most existing technologies emit scent into the general airspace, which spreads the scent throughout the entire room, allowing scents to mix and diminishing the overall effect. The proposed device, with its scent switching capabilities and ability to deliver scent individually, has strong potential for gaming, movies, and virtual reality applications where each level or scene has a unique smell.


NOVEL SUBSTRATE FOR BLOOD-BASED METHYLATED DNA DIAGNOSTIC KITS

Technology Summary
+

Use of blood-based methylated DNA biomarkers for screening of cancer and other diseases is growing. For example, screening for Septin 9 (SEPT9) methylated DNA in blood plasma facilitates the detection of colorectal cancer, since specific cytosine residues in SEPT9 are methylated in cancerous tissue but not in normal colon tissue. Accurately assessing methylation levels for methylated DNA biomarkers, however, requires a robust positive control. Typical screening assays rely on completely methylated genomic DNA from cell line sources that fail to represent naturally occurring patterns of methylated DNA accurately. This novel biomarker assay uses the pooled plasma of pregnant women as a positive control substrate for SEPT9 biomarker assays. Pooled plasma of pregnant women can also potentially be used as a positive control substrate for other methylated oncofetal biomarkers.


NOVEL TREATMENT FOR GALACTOSEMIA

Technology Summary
+

Galactosemia is a rare, inherited condition where people cannot metabolize galactose due to mutations in GALT, GALE, and GALK1. The disorder appears in 1 in 40,000 live births and can be fatal if left untreated, but no long-term treatment exists. Galactosemia patients also experience intellectual and speech deficits, motor function loss, ataxia, and infertility. The inventors have discovered that accumulation of Gal1-p results in a unique form of endoplasmic reticulum (ER) stress in fibroblasts of patients with Galactosemia. The proposed invention repurposes known ER stress inhibitors, such as Salubrinal, which have been shown to reduce phosphorylation of several intracellular proteins involved in ER stress for the treatment of Galactosemia.


OCA-B PEPTIDE INHIBITORS FOR THE TREATMENT OF TYPE-1 DIABETES

Technology Summary
+

Type-1 diabetes (T1D) is a chronic autoimmune disorder in which host immune system is directed towards antigens associated with insulin generating pancreatic β-cells. Life-long insulin therapy alleviates symptoms of T1D, but treatment complications and affiliated conditions, such as cardiovascular disease, continue to affect patients’ health. Guided by extensive target discovery and GWAS studies along with a mouse model proprietary OCA-B peptide inhibitor has been developed as a treatment for T1D and Multiple Sclerosis. This approach reduces infiltrating T-cell numbers and alleviates T1D-associated elevated glucose levels without impairing T cell development, base-line function or T-cell memory function.


OPENFURTHER: TRANSLATING DATA MODELS

Technology Summary
+

Healthcare data, particularly for research, is often located on multiple, disparate databases. Querying multiple databases to identify the necessary information can sometimes take months, which delays research significantly. OpenFurther is a next generation federation architecture database built to connect disparate data resources. Using this software, heterogeneous data from different databases is transported into a single location. The database preserves heterogeneous data types in their native format, which allows querying of multiple kinds of healthcare data (genotypic, phenotypic, clinical, environmental, public health). OpenFurther provides researchers an efficient way to search multiple healthcare databases at once, helping researchers gain new knowledge and speed up the delivery of data from months to minutes.


OPENINFOBUTTON

Technology Summary
+

Clinicians frequently have patient care questions that go unanswered. Several online resources provide information to assist clinical decision making but current workflow limits their use. OpenInfoButton is a novel, standards-based health information search tool that integrates with multiple EHR systems and allows clinicians to quickly answer clinical questions in real-time. The software uses contextual information stored within the patient’s electronic health record (EHR) and utilized keywords to anticipate questions and provide links to relevant information. This tool allows clinicians to conduct online medical knowledge resource searches easily from multiple sources. To date, the software includes almost 40 knowledge resources. OpenInfoButton has received Health Level Seven (HL7) Infobutton Standard certification, which is required for EHR certification in the United States.


OPTIMIZED NANOPHOTONICS FOR PHOTOVOLTAICS

Technology Summary
+

Current thin-film photovoltaic (PV) cells do not absorb sunlight effectively. Various nanophotonic structures have been proposed to enhance absorption in the thin active layer of these cells, however these are trial-and-error generated designs and are difficult to optimize. A new design technique employs nanophotonic principles to create optimized light trapping structures in thin-film photovoltaic cells. Randomly textured surfaces are applied on the top surface of the thin layers of active PV cell materials. Light scattering from these textures increases the path length within the active material and excites guided-mode resonances, resulting in higher absorption. Sub-micrometer structures on the back surface of the active layer are used to further increase light absorption.


OPTIMIZED p53 PEPTIDES WITH MITOCHONDRIAL TARGETING SIGNALS

Technology Summary
+

p53 is a transcription factor that also stimulates apoptotic signaling through death receptors and the mitochondria. Over half of all cancer express p53 mutations and recombinant p53 is often introduced into cancer cells for treatment. Mutated p53, however, interacts with the introduced p53 rendering it ineffective at suppressing tumors.
p53 peptides with mitochondrial targeting signals (p53-MTS) can be introduced into tumor cells, which does not interact with mutant p53. The mitochondrial p53 works as a monomer with pro- and anti-apoptotic proteins at the mitochondrial outer membrane, causing a rapid apoptotic response. The p53-MTS and DNA binding domain constructs are active in cancer cells independent of their p53 status.


ORGANIC LIGHT-EMITTING DIODE (OLED) WITH RESONANT STRUCTURE

Technology Summary
+

Existing light emitting devices suffer from efficiency problems, such as incomplete light extraction from active layers. This inability to direct light from the diode results in an 180˚ active range of light emission and power losses.

The OLED with Resonant Structure utilizes two mirrors to increase the radiative efficiency of OLEDs by 80-100 percent. The first mirror is a partially reflective, metallic patch grating resonator that reduces lateral propagation of radiative emissions’ diffusion. The second mirror is a transparent electrode of the OLED, which communicates with the optically active material. Together, these mirrors almost double the output power of the LED.


OSTEOGENESIS: METHOD FOR RETENTION OF MEDIA DURING BONE GRAFTING

Technology Summary
+

Trauma or tumors in the craniofacial region can lead to loss of extended bone structure. Resultant defects in the skull require surgical repair and reshaping using rigid, static, and artificial implant materials. These materials often contribute to stress fracturing and cannot be reshaped as the patient grows, which leads to a high number of revision surgeries.

OsteoGenesis is a patient-specific, osteogenic scaffold that is both porous and resorbable. It includes two interlocking plates held together by screws that promote bone regrowth after maxillofacial surgery. Scans obtained using existing imaging techniques are used to print unique PGLA scaffolds that fit the precise needs of each patient. Spacers are used to optimize pore size for maximum particle retention and provide mechanical support. The device is bio-tolerable, preserves functional strength, and facilitates personalized medical treatment, which improves patient outcomes.


PAIN-FREE VENTRICULAR DEFIBRILLATION FOR ICDs

Technology Summary
+

Approximately 1 million individuals in the United States are at high risk for sudden cardiac death. Sudden cardiac death is often associated with ventricular fibrillation (VF), so patients at high risk for VF are fitted with an implantable cardioverter (ICD). ICDs rapidly detect and treat abnormal rhythms. Unfortunately, while ICDs can save lives, they also reduce patients’ quality of life and psychological state. The proposed technology delivers low energy unique pacing for pain-free defibrillation. By reducing the defibrillation energy, the system reduces heart damage and eliminates the pain and anxiety associated with defibrillation shocks. In addition, the technology can be easily incorporated into current ICDs.


PEDIATRIC PATIENT SUMMARY

Technology Summary
+

Health Information Exchange (HIE) systems provide clinicians with medical records for patients from other clinics and hospitals. Patients with extensive medical histories can have hundreds of records, often leaving clinicians’ insufficient tools to decipher patient information quickly. Pediatric Patient Summary (PPS) works with preexisting regional HIE systems to allow parents and clinicians to create detailed, succinct, and relevant summaries of a children’s medical records. PPS is particularly useful for children and youth with special health care needs (CYSHCN). The application allows parents of CYSHCN to annotate their children’s medical records with personalized information and possible corrections so that medical providers can deliver the best possible care.


PEPTIDES FOR CLEARING DEGRADED AND UNFOLDED COLLAGEN

Technology Summary
+

Collagen is a major structure protein found in almost all human tissue. Degraded collagen is present in damaged tissues and is highly associated with many critical human diseases and injuries. The collagen hybridizing peptide (CHP) can bind to these degraded collagens without affecting intact collagen. The proposed CHP has a high affinity to denatured collagen molecules for use in imaging, diagnosing, and treating diseases and injuries that cause collagen damage. The presence of Aza-Glycine residues from collagen mimetic peptide sequence increases stability of bonding to degraded collagen. The peptide can be paired with existing diagnostics and therapeutic agents to provide highly specific and targeted delivery of therapeutics or imaging markers to damaged collagen. Potential applications range from treating cancer to stabilizing blood clots and treating skin conditions.


PERFORATED PLATE SEISMIC DAMPERS

Technology Summary
+

Intense earthquakes and other natural disasters cause significant damage, including deformation and buckling, to buildings that experience non-linear displacement. Structural dampers, which absorb high amounts of energy, prevent or reduce damage. Expenses and specialization, however, limit their use to high-cost applications. Perforated Plate Seismic Dampers offer a novel method for efficient seismic energy absorption at a low cost. A single steel plate shaped to have four “nodes” or fuse points, stretches under seismic accelerations, focusing the shear and tension forces onto the four nodes. This unique plate formation absorbs excess energy, thereby reducing the lateral displacement and resultant damage to buildings during seismic events.


PERSONALIZED ALLELE-SPECIFIC EXPRESSION PROFILING RNA PROBE REAGENTS & ALGORITHMS

Technology Summary
+

Understanding the allele-specific expression effects helps determine how inherited mutations may impact carriers and their offspring. Existing allele expression diagnostics, such as bacterial artificial chromosome (BAC) probes, only work on cultured cells, which increases the time required for testing. The proposed invention uses in situ hybridization probes to detect allele specific expression in cells and tissues. Nuclear whole transcriptome RNA sequencing is used to provide an intron retention score from samples to resolve expression of target alleles. These tools can resolve epigenetic allelic effects, genomic imprinting and random X-inactivation to monitor health and disease progression, and detect disorders by profiling RNASeq data.


PLGA AND PEI BASED PARTICLES FOR DELIVERY OF MESENCHYMAL STEM CELLS

Technology Summary
+

Mesenchymal stem cells (MSCs) can regenerate tissue and treat many debilitating diseases, including cardiovascular disease. Human MSC, however, requires lengthy ex vivo expansion times to prepare a sufficient amount of cells. This reduces transfectability, while increasing costs and contamination risk. MSCs also have poor survivability and short lifespans, further limiting their use. A new mechanism using poly(lactic-co-glycolic acid) (PLGA) and poly(ethylenimine) (PEI) porous particles to deliver MSCs increases the efficiency of MSC treatment. The polymer is optimized for MSC bonding affinity, and constructs an anchoring and supporting system for MSC-loading. The particles are loaded with MSCs and injected into the body to treat damaged tissues, specifically damage from myocardial infarction.


POLYMERS FOR EFFICIENT GENE DELIVERY

Technology Summary
+

Both viral and non-viral delivery systems have been used for gene therapy, but non-viral vectors present a variety of advantages, including scalability, low immune response, flexible loading capacity, and stability. Widespread adoption of non-viral gene vectors, however, has been limited by toxicity and transfection efficiency concerns. Multiple polymers for more efficient delivery of genetic material have been developed. The first is a novel arginine-conjugating bioreducible poly(amido amine) polymer that can degrade into nontoxic molecules in an intracellular environment. Mixing the polymer with PEG inhibits plasmid DNA condensation, improves biocompatibility, and enables in vivo applications. The second polymer is a poly(ethylamine) (PEI)-based gene delivery system, made through polymerization of cysteine and dendrimer branches. The polymer has a smaller molecular weight, which increases the stability of the complex and lowers cytotoxicity. Conjugating PEI to poly(cystaminebis(acrylamide)- diaminohexane) (poly(CBA-DAH)) via a disulfide bond further decreases toxicity and allows genetic material to be released easily.


PORTABLE AND EXPANDABLE PRE-GAIT BARS

Technology Summary
+

Studies show that early mobility for patients in intensive and acute care units (ICU) results in fewer days on mechanical ventilation and shorter ICU and overall hospital stays. Typically, patients in these units are profoundly injured and cannot travel to rehabilitation rooms, meaning therapy has to occur at the patient’s bedside. These space constraints often delay treatment until patient health improves. Portable and Expandable Pre-Gait Parallel Bars offer clinicians and their patients a safe, adjustable, and space-saving means of implementing early mobility therapy. The bars provide a stable frame for basic functions, such as weight shifting and stepping strategies that are essential to early mobility. The stability and design of these bars allow therapists to sit in front of the patient and assist at the foot, knee, or hips without worrying about patients falling. The device has a small form factor and is built from lightweight, industrial grade materials to ensure safety and portability. This new set of expandable parallel bars with adjustable height and width allows physical therapists to engage patients at their bedside, eliminating a barrier to early mobility.


PRACTICAL SMALL MOLECULE IMMUNOASSAY

Technology Summary
+

Biomarker assays provide early detection and identification of disease, which enables timely delivery of individualized treatment strategies to patients. These assays also have the potential to track progression, regression, and recurrence of disease. Detection is typically achieved using an enzyme-linked immunosorbent assay platform, but such assays suffer from poor detection limits and a restricted dynamic range.

The small molecule immunoassay facilitates label-free analyte detection with antibodies. It utilizes two non-linear methods – enhanced second harmonic correlation spectroscopy and enhanced second harmonic imaging – for detection and identification of small molecules. Surface immobilized antibody arrays detect the small molecules, eliminating the need for a second antibody. The assay can be used for diagnostic testing, environmental screening, and drug screening.


PRESENT WEATHER IMAGER

Technology Summary
+

Accurately characterizing the physical properties of atmospheric hydrometeors is essential to improve numerical models for weather forecasting and to respond to current weather conditions. Weather systems track precipitation type and intensity using lasers, shadows, and diffraction patterns, but fail to consistently identify changing precipitation states. These systems are especially unreliable with precipitation at temperatures near freezing and lack sufficient visualization of hydrometeors.

The present weather sensor utilizes high-speed imaging to accurately identify and communicate precipitation types. The sensor consists of a small camera mounted inside an outdoor security enclosure, with an LED lighting array to facilitate image processing. The sensor captures various precipitation types and fall intensities to maximize the accuracy of hydrometeor measurements, even in windy conditions. Standard meteorological measurement tools, such as thermometers and barometers, can be attached to the top of the device to increase the present weather sensor’s versatility and enhance precipitation measurements.


PRESSURE-SENSOR EMBEDDED STENT

Technology Summary
+

Restenosis, the development of plaque deposition in the arteries, occurs in 20 percent of stent implanted patients. Diagnostic technologies on the market today are error prone, difficult to implant, and difficult to manufacture. A new stent has been developed for use in angioplasty stent placement to widen arteries the same as a traditional stent. The stent can measure the pressure along its length to accurately diagnose restenosis. By measuring any drastic drop or gradual increase in pressure through a multiple-zone pressure sensor scheme, the device is able to help locate and diagnose restenosis. These measurements are transmitted wirelessly to a data retrieval device, eliminating the need for periodic interventional procedures currently used to monitor the development of restenosis.


PRO-OR: OR SCHEDULING TOOL TO IMPROVE OPERATIONS AND REDUCE COST

Technology Summary
+

Hospital Operating room (OR) planning is a complex task where numerous resources must be synchronized in order to achieve optimal resource utilization and cost efficiency. Many outpatient ORs use block scheduling to assign time to surgeons requiring hospitals to staff an entire surgical team, of nurses, anesthesiologists, and technicians, for an entire day when only a couple procedures are scheduled. This creates staffing conflicts and reduces efficiency, ultimately increasing hospital costs. OR Scheduling Tool is a smart web-based software with easy user interface, designed to improve utilization of OR time integrating various details and factors such as time needed for a procedure and hospital goals. Embedded algorithms strip patient data from schedules to allow hospitals and surgical centers to share best practices for optimizing OR time. The software is being developed for prospective OR scheduling and staffing to offer insight into cost-containment schemes.


PROTEIN-BASED PLATFORM TO GENERATE CHIMERIC ANTIGEN RECEPTOR-IMMUNE CELLS

Technology Summary
+

Antigen specific T cells and Natural Killer (NK) cells generated by virus- mediated gene transfer of Chimeric Antigen Receptors (CAR) has drastically advanced cancer immunotherapy. However, virus-mediated redirection typically results in permanent CAR gene expression and off- tumor toxicity. The recombinant CAR fusion protein (rCAR) developed is mixed with isolated T and NK cells in vitro, resulting in temporarily activated cells ready for infusion in a matter of hours, rather than days or weeks from traditional methodologies. The rCAR technology is a promising advancement for treating solid and hematological malignancies.


QUANTUM DOT SIZE AND SHAPE MODIFICATION

Technology Summary
+

Conventional routes for synthesizing quantum dots use a high temperature, rapid injection process that makes producing large batches of quantum dots with consistent quality a challenge. Quantum dots grow faster in hot spots within the reaction vessel and slower in the cooler portions, thus broadening the size distribution of the final product and generating undesirably broad photoluminescence emission. Combining many small batches presents its own challenges because batch to batch variations cause the emission of the combined batches to broaden significantly.

A novel process relies on a perturbed, low temperature equilibrium between quantum dot growth and dissolution. The creation of a thermodynamic equilibrium provides control over the net nanoparticle growth rate, quantum dot size, and shape. This process keeps the nanocrystal in its original solvent, allowing the nanocrystal to retain the desired characteristics of high efficiency and tunable photoluminescence emission. The process also scales up readily from small to large batch sizes without compromising quality.


RESEARCH QUEST

Technology Summary
+

Teachers face increasing demand to incorporate applied learning in lesson plans, but lack resources to provide these experiences. Research Quest is an instructional tool created by the Natural History Museum of Utah that offers inquiry-based science modules using interactive digital models. It leverages the museum’s research and collections to support development of critical thinking, collaboration, and communication skills throughout K-12 education. These investigations support both learning and assessment.

Students work in groups to analyze evidence and answer questions. Videos from scientists, reference photos, and other instructional material help guide students through the modules. Research Quest provides teacher support materials, such as instructional strategies and lesson objectives, to assist with successful facilitation of the tool. Current modules target 6th, 7th, and 8th grade science teachers, with tools in development for other grades.


REVENUE CYCLE TRAINING

Technology Summary
+

Revenue cycle management (RCM) aligns patient-generated hospital revenue by tracking care episodes from appointment scheduling and registration through discharge and final payment. Despite the importance of RCM, few training programs exist. Lack of training for revenue cycle staff limits staff engagement and results in high turnover among revenue cycle employees. The RCSS training program educates staff on the complexities of RCM. The four day program provides an overall look at the revenue cycle as well as a breakdown of the individual steps to identify team contributions, emphasize how staff fit in, and the highlight the impact of their role. The training utilizes games, hands on practice and friendly competitions to apply concepts and keep employees engaged. Materials are available post training for employees who need a refresher or have specific questions. RCSS Training has created a level of partnership with individual employees to increase retention rates.


REVERSIBLE CROSS-LINKED POLYMERS FOR DRUG DELIVERY

Technology Summary
+

Controlled-release drug delivery systems often use hydrogels as drug carriers due to their adjustable swelling capacities. Hydrogel fabrication, however, typically requires cytotoxic materials or conditions that limit their use in biological systems. Additionally, synthetic hydrogels fail in high stress application because they are unable to self-heal. The proposed invention enables creation of self-healing, reversible, cross-linked polymers. The hydrogels are fabricated by mixing two liquid-state pre-polymer under physiologic conditions to form a gel at body temperature. In acidic conditions, the hydrogel becomes a viscous, free-flowing gel, but can return to its original form when pH is adjusted. These cross-linked hydrogels also exhibit shear thinning and viscoelastic recovery properties. The novel hydrogel has potential applications in vaginal drug delivery, tissue engineering, lysosomal drug delivery, gastric drug delivery, cell culture, and food gelation.


ROCK-ON-A-CHIP

Technology Summary
+

Extraction of oil and natural gas is time consuming and costly. Behavior of fluids and gases in nanometer-scale pores of reservoir rocks can have a strong functional dependence on the pore size and surface chemistry. As such, oil and gas companies rely on advanced imaging techniques and computer generated models to determine how oil is flowing. These simulations, unfortunately, do not reflect real-world properties and characteristics of reservoir rocks.

Rock-On-A-Chip transforms traditional reservoir characterization methods by using physical models to refine computer simulations. Subsurface geology is replicated on a chip or wafer and then tested using real oil to simulate the effect of channel shape and dimensions on relative permeability. The rock-on-a-chip is connected to a fluid flow system and visualization set-up to simulate frac-fluid and water transport, CO2 flooding, and sequestration. This improves oil extraction methods and allows oil and gas companies to drill more effectively, which reduces their environmental footprint.


RON KINASE INHIBITOR FOR PREVENTING AND TREATING BONE LOSS

Technology Summary
+

Over 70 percent of breast cancer patients develop bone metastasis, which causes severe pain, nerve compression, hypercalcemia, and debilitating bone fractures. Development and growth of bone metastases depend on the interactions between cells in the bone-tumor microenvironment that increase survival and proliferation of tumor cells. Current treatment options for osteolytic bone metastasis treatment are limited to bisphosphonates and expensive RANKL-blocking antibody therapy with many adverse side effects.

A new, cost-effective treatment method utilizes a novel mechanism of action involving a RON kinase that activates macrophage-stimulating protein (MSP) which is a key driver of osteoclast activation in vivo. The pathway is independent of RANKL signaling. Inhibiting RON prevents both the development of osteolysis and the progression of existing osteolysis. Inhibiting this method also shows potential for treating bone loss due to osteoporosis.


SAFE-UT

Technology Summary
+

Almost 6,000 youth aged 15 – 24 commit suicide each year in the United States. Resources exist to help these youth, but all too often the lack of anonymity or the need to place a call prevent youth from reaching out.

SafeUT allows students to connect with counselors anonymously through text or web chat. All interactions are handled by licensed clinicians based on professional standard of care. The SafeUT app can also be used to send tips to school officials regarding bullying, gang activity, drugs, alcohol, and more. All communications supported by SafeUT are completely anonymous, which increases the likelihood of reporting and allows schools time to respond to issues.


SCRIBE DATALOGGER

Technology Summary
+

Data logging devices record scientific measurements from research and industrial processes for storage and analysis. Existing data loggers are often large and expensive, with limited storage capabilities. These devices, which are built using outdated programming languages, also require a physical connection to transfer data. The Scribe Datalogger modernizes data collection and analysis. The data logger relies on external sensors to capture analog and digital measurement signals, which decreases the size and cost of the device. Scribe Datalogger then records the measurements and displays real-time signals for data visualization and diagnosis of measurement problems. The system can store up to 1000 MB of data and information can be easily retrieved from the system using existing protocols. It also facilitates platform migration by using a code translator to convert old scripts to Python, a current, flexible, and open-source programming language. Scribe Datalogger has been used in multiple projects including the UTA TRAX air quality project, the Mobile Atmospheric Lab, and the Utah Atmospheric Trace Gas & Air Quality Lab.


SECONDARY STIFFNESS DEVICES FOR STRUCTURAL SYSTEMS

Technology Summary
+

In 2017, the National Oceanic and Atmospheric Administration reported over $300B in structural damages caused by natural disasters. Various devices exist to prevent structural damage after seismic events by absorbing load displacements. One such device, a buckling restrained brace (BRB), absorbs energy through plastic deformation and utilizes a stiff sleeve with a metal shell to prevent buckling under compressive forces. The sleeve is prone to fracturing and excessive plastic deformation can cause permanent damage to the system. The proposed system limits displacement of steel beams during a natural disaster and reduces structural damage by adding addition stiffness to BRBs through reinforced steel sleeves. Steel compression plates attached at the joint where a steel beam connects to the ground and at the steel tube encasing mortar add stability to the system. Secondary tension straps decrease excessive deformation improving the reliability of the system.


SEISMIC BUCKLING BRACE

Technology Summary
+

During intense earthquakes and other natural disasters, buildings experience significant damage, including deformation and buckling, due to non-linear displacement. Structural dampers absorb high amounts of energy and can prevent or reduce damage. One such device, a buckling restrained brace (BRB), absorbs energy through plastic deformation. However, conventional BRBs, typically concrete in a steel tube (perform well under large forces, 200,000+ pounds) are heavy and have not yet been developed for small capacity applications.

The heavy timber buckling restrained brace consists of a steel core and heavy timber casing to prevent buckling, even for small capacity applications. It can be used in buildings, bridges, and other structures to dissipate seismic energy and prevent damage from natural disasters. It improves resiliency by acting as a fuse to protect the structure.
This casing can be further fortified by adding compression screws to account for forces that run perpendicular to the grain.


SEISMIC SUPPORT SYSTEM FOR EXPANDED POLYSTYRENE GEOFOAM BRIDGE

Technology Summary
+

According to the U.S. Department of Transportation, 61,000 bridges in the United States are structurally deficient. Consolidation and post- construction creep settlement slow and inhibit accelerated construction of support systems for bridge structures on soft soil. Other common challenges include low bearing capacity, poor construction conditions, relocation of buried utilities, and potential settlement damage to adjacent structures and foundations. Expanded Polystyrene (EPS) Geofoam Bridge Support Systems accelerate construction of bridge support without compromising safety. EPS eliminates the need for deep foundations or ground improvement in soft ground conditions. EPS technology is lightweight and reduces, or almost eliminates, uneven settling of soil. EPS bridges are used around the world, but not currently permitted in the United States as they do not hold up under seismic conditions. The proposed system increases stability during seismic events by utilizing a steel cable system enabling EPS bridge deployment in seismic geographic areas.


SENSITIVE ASSAY FOR 5α-DIHYDROTESTOSTERONE

Technology Summary
+

Circulating androgen 5a-dihydrotestosterone (DHT) is a major indicator of benign prostatic hyperplasia, which affects over three million men each year in the United States and can lead to prostate cancer. Additionally, polycystic ovarian syndrome (PCOS), which affects 8-10 percent of women, is caused by elevated androgen concentrations. PCOS causes conditions ranging from type 2 diabetes to obesity and heart disease. Immunoassays for testosterone and other androgens, however, are often inaccurate due to analytical interference and inaccurate results at low concentrations.

A simple, high-throughput assay uses specific derivitizing agents to improve detection of keto-steroids, such as DHT. This method has enhanced ionization efficiency and can detect analytes at low concentration levels.


SIMPLE COACERVATE ADHESIVE

Technology Summary
+

Adhesives are ubiquitous in numerous industries, but most fail in aqueous environments such as the human body and marine ecosystems.

An underwater adhesive composed of simple coacervates facilitates use of adhesives in wet field applications. The adhesive is formed by crosslinking chemistry applied to polymers. This creates a cross-linked coacervate in the presence of any molecule or particle with two or more nucleophilic groups. Water is a poor solvent for this adhesive, which allows for to rapid hardening and insolubilization of the adhesive components. This simple coacervate adheres to wet substrates and can be delivered underwater without dispersing.


SLEEP APNEA PATIENT MANAGEMENT SOFTWARE

Technology Summary
+

Continuous positive airway pressure (CPAP) therapy is almost 100 percent effective in treating sleep apnea, which affects over 18 million Americans. Almost half of sleep apnea patients, however, abandon CPAP before treatment is complete. Lack of CPAP compliance has led insurance companies to require compliance data for reimbursement. The proposed software plugin for CPAP devices can provide compliance data, as well as overall information on the sleep apnea population. The software can facilitate targeted population management for sleep centers by providing reminders regarding clinic visits, CPAP usage statistics, and the ability to categorize patients based on insurance provider. Data can be available to clinicians immediately for virtual consultations, which would help sleep center staff manage patients in a more timely and cost effective manner.


SOLID POLYMER LITHIUM-ION BATTERIES

Technology Summary
+

Conventional lithium-ion batteries provide satisfactory performance, but using liquid electrolyte creates the potential for solvent leakage and flammability hazard which has created safety and reliability concerns. Use of a solid polymer electrolyte would improve safety, but solid electrolytes often do not meet performance requirements due to low ionic conductivity at lower temperature.

These new Lithium-ion batteries utilize high performance nanocomposite solid polymer electrolytes (SPE) to improve safety and reliability. This new solid polymer electrolyte integrates low cost nanocomposite additives to allow high ionic conductivity at low temperatures, increased stability, and is pliable & moldable. Very positive test results have been obtained with the new SPE for use in lithium-sulfur, lithium-silicon, and lithium iron phosphate batteries. The new batteries can be used for energy storage, electric vehicles, portable electronics devices, sensors, and other applications.


SPELL & DEEPLOG

Technology Summary
+

System logs record system states at critical points to help debug failures and promote system stability. Analyzing system logs to detect irregularities establishes more secure and trustworthy systems. Typical log parsing software provides offline, batch processing of raw files, but many applications require constant monitoring not provided by offline methods. Spell, an online streaming method, parses system event logs to dynamically extract log patterns and maintain a set of discovered message types. DeepLog utilizes Long Short-Term Memory (LSTM) to model a system log as a natural language sequence that automatically learns log patterns. DeepLog detects anomalies when log patterns deviate from the model trained from log data under normal execution. When an anomaly is detected, users can diagnose and perform root cause analysis immediately, thereby increasing system security.


STAPLED PEPTIDE THERAPEUTIC FOR NON-DRUGGABLE TARGETS

Technology Summary
+

Existing therapeutic platforms and drug arsenals utilize small molecules and large antibody proteins, addressing only 20 percent of the druggable market. The chemical space required for inhibition of protein-protein interactions is considered “undruggable” and remains underexplored. Undesirable properties of peptides such as instability, lack of cell/ tissue penetration, immunogenicity of synthetics, compound the problem and make it unsuitable for use in humans. The new method is a proprietary facile and efficient synthetic platform method to generate high yield stapled peptides involving macrocyclization and a two-component thiol-ene based reaction.


STAPLED, MUTANT 3 CELL PENETRATING PEPTIDE FOR BCR-ABL INHIBITION

Technology Summary
+

Each year, over 8,000 cases of chronic myeloid leukemia (CML) are diagnosed in the United States. Current first-line treatment utilizes tyrosine kinase inhibitors (TKIs) that demonstrate high potency against CML. This treatment is limited, however, by mutations in Bcr-Abl (a gene fusion found in the majority of patients with CML) that confer resistance.
A novel, stapled, mutant three-cell penetrating peptide for Bcr-Abl inhibition prevents the oncogenic function of Bcr-Abl without triggering resistance-causing mutations. The peptide inhibitor consists of a modified Bcr coil that preferentially interacts with Bcr-Abl and prevents dimerization. The coil has a leukemia specific cell penetrating petptide and a hydrocarbon staple to ensure the peptide will only bind to and inhibit Bcr-Abl cancer cells. This causes cancer cell death while leaving non-cancer cells healthy and unaffected. The smaller peptide is also easier to deliver and demonstrates increased cell permeability.


STAUFEN-1 TARGETING THERAPEUTIC FOR TREATMENT OF FATAL NEURODEGNERATIVE DISEASES

Technology Summary
+

Neurodegenerative diseases represent an ever-increasing societal and economic burden with World Health Organization estimates indicating that they will replace cancer as the 2nd leading cause of death by 2040.

Spinocerebellar ataxia type 2 (SCA2) is a part of a family of progressive, often fatal neurodegenerative diseases with no known treatments or cures. Dominantly-acting mutations lead to expansion of a polyQ domain in the ataxin-2 (ATXN2) protein. Assembly of RNA-binding protein Staufen-1 (STAU1) with mutant ATXN2 in stable inclusions is causative, resulting in aberrant RNA processing in SCA2 and other neuronal diseases such as ALS. The proposed technology identifies STAU1 as an interventional target with STAU1 antisense therapeutic alleviating the severity of the disease in a mouse model of SCA2.


SYMPTOM ASSESSMENT APPLICATIONS FOR CANCER PATIENTS

Technology Summary
+

Patients with cancer often have difficulty verbalizing symptoms, which can lead to unaddressed pain. Use of adult tools for younger patients has resulted in a communication gap between patients and providers. The proposed apps capture the complexity of patient symptoms in a way not currently possible. Adult patients can choose from over 30 symptoms, grouping them and outlining causes and key symptoms for each group. Color Me Healthy provide clinicians with meaningful resources to represent patient symptoms, thus facilitating effective communication between elementary-aged cancer patients and their providers. Symptom reporting is completed in real-time by the actual patient, rather than parents. Children use drawing and coloring to express their symptoms. The app integrates various daily activities for health and wellness promotion in addition to symptom reporting. Color Me Healthy could also be developed for use by young patients with other chronic illnesses.


SYMPTOMCARE

Technology Summary
+

SymptomCare uses patient reported outcomes to monitor patient symptoms resulting from chemotherapy at home. Users can report the presence and severity of symptoms using push button telephones. The system presents patients with a series of questions designed to determine patient condition and family wellbeing. Based on patient reported symptoms, the system generates suggestions in real time to help alleviate patient pain and discomfort. It automatically sends a warning alert to the care team when symptom severity reaches a predetermined threshold, which prompts the team to make direct contact with the patient. This enables care providers to improve the patient experience and outcomes by tracking patient symptoms outside of the clinic or hospital and responding with care suggestions. By providing updates on patient symptoms in real time, the system also functions as a case management portal for clinicians.


TEST FOR DIAGNOSIS OF VITAMIN B12 DEFICIENCY

Technology Summary
+

Vitamin B12 plays an important role in the formation of red blood cells and the maintenance of the central nervous system. Vitamin B12 deficiency causes a wide range of hematologic and neuropsychiatric disorders that can be reversed when treated early. Roughly 50 percent of patients, however, go undiagnosed because current tests rely on serum measurements that fail to identify increased methylmalonic acid levels in early disease states.
A new test increases the sensitivity of methylmalonic testing to identify vitamin B12 deficiency earlier. The test uses mass spectrometry and atmospheric pressure ionization to identify presence and quantity of dicarboxylic acids. This method also enables differentiation between isobaric dicarboxylic acids, such as methylmalonic acid and succinic acid. The diagnostic test can be performed using biological samples from blood, saliva, or urine.


THERMOELECTRIC ENERGY HARVESTER

Technology Summary
+

Thermoelectric power generators harvest energy from waste or natural heat without producing any direct emissions of greenhouse gases. As one of the most promising clean energy conversion technologies, thermoelectric materials transform temperature gradients into electrical power without any moving parts. Existing thermoelectric materials are limited by toxicity at high temperatures and low conversion efficiency.

This new thermoelectric energy harvester is a novel oxide-based thermoelectric material that exhibits high electrical and thermal conductivity for increased performance. The material has a “cool” side and a “heated” side that uses the temperature differential to generate electrical power. Possible uses in automobiles, power plants, generators, or anything with heat.


THERMOPHOTOVOLTAIC ELECTRICITY GENERATOR

Technology Summary
+

Thermophotovoltaic energy conversion involves converting energy from heat to electricity through the use of photons. Low efficiency rates limit the use of current thermal technology since radiation emitted through thermophotovoltaics contain less energy than visible light. Most existing technology uses an outside mechanical force to maintain or manipulate a gap between the thermophotovoltaic (TPV) cell and the heat source.

The Thermophotovoltaic Electricity Generator utilizes electrostatic forces to maintain a self-regulated micro/nanosize gap between the TPV cell and heat source. This self-regulation minimizes the size and increases the efficiency of power generation. Testing indicates this new technology improves capture of heat waste and increases energy absorption by up to thirty times the industry standard.


TONSIL-VIEW

Technology Summary
+

Complications of tonsillectomies, such as tonsillectomy hemorrhage, occur in approximately five percent of patients each year. Tonsillectomy hemorrhage and other throat conditions, such as strep throat and peritonsillar abscess, can be hard to visualize, especially in patients with long soft palates or small pharynxes.

TonsilView enables clear visualization of the oropharynx and tonsils joint with a bite block, tongue depressor, and cheek/lip retractor. The bite guard facilitates an unobstructed view of the tonsils, while the tongue depressor and retractor expose additional soft tissues of the oropharynx for enhanced diagnosis and treatment.


TWO-ZONE FLOW-THROUGH PCR USING THIN FILMS

Technology Summary
+

PCR is an inexpensive and robust technique for amplifying specific segments of DNA for gene analysis, DNA sequencing, DNA profiling, and diagnostic tests. The speed at which PCR can be performed depends on the time required to cycle through temperature dependent steps.
A novel PCR machine that combines a microfluidic card and simple thermal cycler performs PCR at extreme speeds by reducing cycling time to less than a second. Copper blocks surround the microfluidic consumable card to improve heat transfer and temperature control. This interaction reduces overall PCR time by enabling temperature equilibration in under 0.3 seconds. The device is more affordable than existing solutions and portable, facilitating use in point-of-care settings.


ULTRASOUND-DRIVEN VESTIBULAR-EVOKED MYOGENIC DIAGNOSTIC TEST

Technology Summary
+

The vestibular system is vital part of a person’s ability to balance. Almost 69 million Americans have experienced vestibular dysfunction. An additional 8 million American adults report a chronic problem with balance, while 2.5 million report a chronic problem with dizziness. Diagnosing vestibular dysfunction requires a series of expensive and invasive tests, such as vestibular evoked myogenic testing. These tests are often inaccurate and can cause patient discomfort.

The ultrasound driven vestibular-evoked myogenic diagnostic test uses focused ultrasound and infrared pulses to stimulate vestibular organs. These thermal pulses activate vestibular-evoked myogenic potentials in the neck and ocular muscles. The myogenic potentials are averaged over time to generate a waveform that represents vestibular organ function. The magnitude and latency of the stimulus-response is then used to diagnosis vestibular otolith function.


UPLAY

Technology Summary
+

Regular, structured practice is essential to learning an instrument, yet children and youth often fail to practice consistently. UPlay utilizes game- like lesson plans with stories that teach concepts and encourage practice to help motivate children to practice regularly. UPlay contains over fifty online lessons geared toward children ages 6 to 10. Each lesson includes five segments: a short story, a demonstration, an interactive game, piano pieces, and a quiz. The program uses music instrument digital interface (MIDI), which allows students to link their keyboard with the website and receive immediate feedback. UPlay also tracks progress and practice patterns to help instructors personalize lesson plans.


USING ARC PROTEIN AS A MEANS FOR RNA DELIVERY TO CELLS

Technology Summary
+

A disruptive nucleic acid delivery platform technology is being developed that harnesses the unique properties of Arc protein. Originally identified as essential for storing information in the brain, it also has an important role in cell-to-cell communication. The Arc protein’s unusual property of co-assembling self RNA with arc protein resembles viral capsid like structures that deliver the genetic cargo from cell to cell. The technology is being optimized for transfer of any genetic material as a therapeutic payload without dependency on the cell type.


VALUE DRIVEN OUTCOMES (VDO)

Technology Summary
+

Hospitals have started to shift away from traditional revenue cycles to more comprehensive, quality-driven cost accounting. Existing accounting tools for healthcare organizations, however, do not support cost accounting at the patient-level.

Value Driven Outcomes (VDO) provides comprehensive software for understanding and visualizing health care costs. VDO takes a new approach to estimate the cost of care by allocating operational costs, such as labor and supplies, to individual patient encounters. The software includes technical infrastructure for implementing a cost model and uses a visualization layer to facilitate the identification of opportunities for potential value improvement. VDO helps hospitals function more efficiently by increasing access to accurate, segmented cost information and generating web-based reports and dashboards that increase visibility for hospital costs.


β-CATENIN/T-CELL FACTOR (TCF) FOR TARGETING CANCER AND IMMUNE TOLERANCE

Technology Summary
+

Irregular activation of the Wnt/β-catenin pathway leads to initiation and progression of many cancers, such as colorectal cancer, leukemia, and multiple myeloma. Cancer stem cells, which are resistant to conventional therapies, are also controlled by Wnt signaling. Recent studies indicate Wnt/β-catenin signaling provides therapeutic benefits as a molecular switch between opposing immune functions to treat autoimmune diseases, cancer, and infectious diseases. The proposed technology describes design and synthesis of micro-molar inhibitors of β-catenin/Tcf inhibitors with outstanding selectivity, suitable for additional drug development.